ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.07789
  4. Cited By
Predicting Citywide Crowd Flows in Irregular Regions Using Multi-View
  Graph Convolutional Networks

Predicting Citywide Crowd Flows in Irregular Regions Using Multi-View Graph Convolutional Networks

19 March 2019
Junkai Sun
Junbo Zhang
Qiaofei Li
Xiuwen Yi
Yuxuan Liang
Yu Zheng
    AI4TS
ArXivPDFHTML

Papers citing "Predicting Citywide Crowd Flows in Irregular Regions Using Multi-View Graph Convolutional Networks"

7 / 7 papers shown
Title
Self-Supervised State Space Model for Real-Time Traffic Accident
  Prediction Using eKAN Networks
Self-Supervised State Space Model for Real-Time Traffic Accident Prediction Using eKAN Networks
Xin Tan
Meng Zhao
37
0
0
09 Sep 2024
Pretrained Mobility Transformer: A Foundation Model for Human Mobility
Pretrained Mobility Transformer: A Foundation Model for Human Mobility
Xinhua Wu
Haoyu He
Yanchao Wang
Qi Wang
37
1
0
29 May 2024
Urban Regional Function Guided Traffic Flow Prediction
Urban Regional Function Guided Traffic Flow Prediction
Kuo Wang
Lingbo Liu
Yang Liu
Guanbin Li
Fan Zhou
Liang Lin
30
25
0
17 Mar 2023
AIST: An Interpretable Attention-based Deep Learning Model for Crime
  Prediction
AIST: An Interpretable Attention-based Deep Learning Model for Crime Prediction
Yeasir Rayhan
T. Hashem
15
22
0
16 Dec 2020
Exploring the Generalizability of Spatio-Temporal Traffic Prediction:
  Meta-Modeling and an Analytic Framework
Exploring the Generalizability of Spatio-Temporal Traffic Prediction: Meta-Modeling and an Analytic Framework
Leye Wang
Di Chai
Xuanzhe Liu
Liyue Chen
Kai Chen
AI4TS
16
29
0
20 Sep 2020
Predicting origin-destination ride-sourcing demand with a
  spatio-temporal encoder-decoder residual multi-graph convolutional network
Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network
Jintao Ke
Xiaoran Qin
Hai Yang
Zhengfei Zheng
Zheng Zhu
Jieping Ye
AI4TS
32
151
0
17 Oct 2019
Convolutional LSTM Network: A Machine Learning Approach for
  Precipitation Nowcasting
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
Xingjian Shi
Zhourong Chen
Hao Wang
Dit-Yan Yeung
W. Wong
W. Woo
230
7,903
0
13 Jun 2015
1