ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.06133
  4. Cited By
Compression and Interpretability of Deep Neural Networks via Tucker
  Tensor Layer: From First Principles to Tensor Valued Back-Propagation

Compression and Interpretability of Deep Neural Networks via Tucker Tensor Layer: From First Principles to Tensor Valued Back-Propagation

14 March 2019
G. G. Calvi
Ahmad Moniri
Mahmoud Mahfouz
Qibin Zhao
Danilo P. Mandic
    AI4CE
ArXivPDFHTML

Papers citing "Compression and Interpretability of Deep Neural Networks via Tucker Tensor Layer: From First Principles to Tensor Valued Back-Propagation"

4 / 4 papers shown
Title
Efficient Source-Free Time-Series Adaptation via Parameter Subspace Disentanglement
Efficient Source-Free Time-Series Adaptation via Parameter Subspace Disentanglement
Gaurav Patel
Christopher Sandino
Behrooz Mahasseni
Ellen L. Zippi
Erdrin Azemi
Ali Moin
Juri Minxha
TTA
AI4TS
55
3
0
03 Oct 2024
Spatial-temporal traffic modeling with a fusion graph reconstructed by
  tensor decomposition
Spatial-temporal traffic modeling with a fusion graph reconstructed by tensor decomposition
Qin Li
Xu Yang
Yong Wang
Yuankai Wu
Deqiang He
44
10
0
12 Dec 2022
Tensor decomposition to Compress Convolutional Layers in Deep Learning
Tensor decomposition to Compress Convolutional Layers in Deep Learning
Yinan Wang
W. Guo
Xiaowei Yue
6
15
0
28 May 2020
Bayesian Tensorized Neural Networks with Automatic Rank Selection
Bayesian Tensorized Neural Networks with Automatic Rank Selection
Cole Hawkins
Zheng-Wei Zhang
BDL
25
52
0
24 May 2019
1