ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.05499
  4. Cited By
DeepOBS: A Deep Learning Optimizer Benchmark Suite

DeepOBS: A Deep Learning Optimizer Benchmark Suite

13 March 2019
Frank Schneider
Lukas Balles
Philipp Hennig
    ODL
ArXivPDFHTML

Papers citing "DeepOBS: A Deep Learning Optimizer Benchmark Suite"

12 / 12 papers shown
Title
Training neural networks faster with minimal tuning using pre-computed lists of hyperparameters for NAdamW
Sourabh Medapati
Priya Kasimbeg
Shankar Krishnan
Naman Agarwal
George E. Dahl
64
0
0
06 Mar 2025
Learning Versatile Optimizers on a Compute Diet
Learning Versatile Optimizers on a Compute Diet
A. Moudgil
Boris Knyazev
Guillaume Lajoie
Eugene Belilovsky
226
0
0
22 Jan 2025
Towards Better Open-Ended Text Generation: A Multicriteria Evaluation Framework
Towards Better Open-Ended Text Generation: A Multicriteria Evaluation Framework
Esteban Garces Arias
Hannah Blocher
Julian Rodemann
Meimingwei Li
Christian Heumann
Matthias Aßenmacher
28
1
0
24 Oct 2024
Debiasing Mini-Batch Quadratics for Applications in Deep Learning
Debiasing Mini-Batch Quadratics for Applications in Deep Learning
Lukas Tatzel
Bálint Mucsányi
Osane Hackel
Philipp Hennig
51
0
0
18 Oct 2024
Deconstructing What Makes a Good Optimizer for Language Models
Deconstructing What Makes a Good Optimizer for Language Models
Rosie Zhao
Depen Morwani
David Brandfonbrener
Nikhil Vyas
Sham Kakade
52
17
0
10 Jul 2024
HesScale: Scalable Computation of Hessian Diagonals
HesScale: Scalable Computation of Hessian Diagonals
Mohamed Elsayed
A. R. Mahmood
22
8
0
20 Oct 2022
A Stochastic Bundle Method for Interpolating Networks
A Stochastic Bundle Method for Interpolating Networks
Alasdair Paren
Leonard Berrada
Rudra P. K. Poudel
M. P. Kumar
24
4
0
29 Jan 2022
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Xiaoxin He
Fuzhao Xue
Xiaozhe Ren
Yang You
32
14
0
01 Nov 2021
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient
  Filtering
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient Filtering
Ricky T. Q. Chen
Dami Choi
Lukas Balles
David Duvenaud
Philipp Hennig
ODL
44
6
0
09 Nov 2020
Descending through a Crowded Valley - Benchmarking Deep Learning
  Optimizers
Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers
Robin M. Schmidt
Frank Schneider
Philipp Hennig
ODL
42
162
0
03 Jul 2020
On Empirical Comparisons of Optimizers for Deep Learning
On Empirical Comparisons of Optimizers for Deep Learning
Dami Choi
Christopher J. Shallue
Zachary Nado
Jaehoon Lee
Chris J. Maddison
George E. Dahl
18
256
0
11 Oct 2019
L4: Practical loss-based stepsize adaptation for deep learning
L4: Practical loss-based stepsize adaptation for deep learning
Michal Rolínek
Georg Martius
ODL
46
63
0
14 Feb 2018
1