Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.05480
Cited By
Variational Bayesian Optimal Experimental Design
13 March 2019
Adam Foster
M. Jankowiak
Eli Bingham
Paul Horsfall
Yee Whye Teh
Tom Rainforth
Noah D. Goodman
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variational Bayesian Optimal Experimental Design"
29 / 29 papers shown
Title
PIED: Physics-Informed Experimental Design for Inverse Problems
Apivich Hemachandra
Gregory Kang Ruey Lau
Szu Hui Ng
Bryan Kian Hsiang Low
PINN
48
0
0
10 Mar 2025
Bayesian Adaptive Calibration and Optimal Design
Rafael Oliveira
Dino Sejdinovic
David Howard
Edwin Bonilla
113
0
0
20 Jan 2025
Amortized Bayesian Experimental Design for Decision-Making
Daolang Huang
Yujia Guo
Luigi Acerbi
Samuel Kaski
48
2
0
03 Jan 2025
Deep Optimal Sensor Placement for Black Box Stochastic Simulations
Paula Cordero-Encinar
Tobias Schröder
P. Yatsyshin
Andrew Duncan
50
0
0
15 Oct 2024
Bayesian Experimental Design via Contrastive Diffusions
Jacopo Iollo
Christophe Heinkelé
Pierre Alliez
Florence Forbes
30
0
0
15 Oct 2024
Coupled Input-Output Dimension Reduction: Application to Goal-oriented Bayesian Experimental Design and Global Sensitivity Analysis
Qiao Chen
Elise Arnaud
Ricardo Baptista
O. Zahm
40
1
0
19 Jun 2024
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Jiayuan Dong
Christian L. Jacobsen
Mehdi Khalloufi
Maryam Akram
Wanjiao Liu
Karthik Duraisamy
Xun Huan
BDL
54
5
0
08 Apr 2024
Nonlinear Bayesian optimal experimental design using logarithmic Sobolev inequalities
Fengyi Li
Ayoub Belhadji
Youssef Marzouk
30
1
0
23 Feb 2024
Leveraging Nested MLMC for Sequential Neural Posterior Estimation with Intractable Likelihoods
Xiliang Yang
Yifei Xiong
Zhijian He
36
0
0
30 Jan 2024
OpenBox: A Python Toolkit for Generalized Black-box Optimization
Huaijun Jiang
Yu Shen
Yang Li
Beicheng Xu
Sixian Du
Wentao Zhang
Ce Zhang
Tengjiao Wang
38
5
0
26 Apr 2023
Prediction-Oriented Bayesian Active Learning
Freddie Bickford-Smith
Andreas Kirsch
Sebastian Farquhar
Y. Gal
Adam Foster
Tom Rainforth
42
29
0
17 Apr 2023
Modern Bayesian Experimental Design
Tom Rainforth
Adam Foster
Desi R. Ivanova
Freddie Bickford-Smith
37
77
0
28 Feb 2023
Stability estimates for the expected utility in Bayesian optimal experimental design
D. Duong
T. Helin
Jose Rodrigo Rojo-Garcia
19
10
0
08 Nov 2022
Bayesian model calibration for block copolymer self-assembly: Likelihood-free inference and expected information gain computation via measure transport
Ricardo Baptista
Lianghao Cao
Joshua Chen
Omar Ghattas
Fengyi Li
Youssef M. Marzouk
J. Oden
34
11
0
22 Jun 2022
TransBO: Hyperparameter Optimization via Two-Phase Transfer Learning
Yang Li
Yu Shen
Huaijun Jiang
Wentao Zhang
Zhi-Xin Yang
Ce Zhang
Tengjiao Wang
36
15
0
06 Jun 2022
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
A. Maraval
Matthieu Zimmer
Antoine Grosnit
Rasul Tutunov
Jun Wang
H. Ammar
30
2
0
27 May 2022
Robust Expected Information Gain for Optimal Bayesian Experimental Design Using Ambiguity Sets
Jinwook Go
T. Isaac
21
10
0
20 May 2022
Statistical applications of contrastive learning
Michael U. Gutmann
Steven Kleinegesse
Benjamin Rhodes
24
7
0
29 Apr 2022
Interventions, Where and How? Experimental Design for Causal Models at Scale
P. Tigas
Yashas Annadani
Andrew Jesson
Bernhard Schölkopf
Y. Gal
Stefan Bauer
CML
36
48
0
03 Mar 2022
Sequential Bayesian experimental designs via reinforcement learning
Hikaru Asano
OffRL
18
0
0
14 Feb 2022
Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods
Desi R. Ivanova
Adam Foster
Steven Kleinegesse
Michael U. Gutmann
Tom Rainforth
OffRL
21
46
0
03 Nov 2021
Bayesian Sequential Optimal Experimental Design for Nonlinear Models Using Policy Gradient Reinforcement Learning
Wanggang Shen
Xun Huan
11
40
0
28 Oct 2021
Automatic Discovery and Description of Human Planning Strategies
Julian Skirzyñski
Y. Jain
Falk Lieder
30
1
0
29 Sep 2021
Test Distribution-Aware Active Learning: A Principled Approach Against Distribution Shift and Outliers
Andreas Kirsch
Tom Rainforth
Y. Gal
OOD
TTA
39
22
0
22 Jun 2021
Gradient-based Bayesian Experimental Design for Implicit Models using Mutual Information Lower Bounds
Steven Kleinegesse
Michael U. Gutmann
FedML
33
25
0
10 May 2021
Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mutual Information
W. Neiswanger
Ke Alexander Wang
Stefano Ermon
MLAU
37
30
0
19 Apr 2021
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Adam Foster
Desi R. Ivanova
Ilyas Malik
Tom Rainforth
28
78
0
03 Mar 2021
Gryffin: An algorithm for Bayesian optimization of categorical variables informed by expert knowledge
Florian Hase
Matteo Aldeghi
Riley J. Hickman
L. Roch
Alán Aspuru-Guzik
47
105
0
26 Mar 2020
Bayesian Experimental Design for Implicit Models by Mutual Information Neural Estimation
Steven Kleinegesse
Michael U. Gutmann
26
64
0
19 Feb 2020
1