Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.02837
Cited By
v1
v2 (latest)
The Privacy Blanket of the Shuffle Model
7 March 2019
Borja Balle
James Bell
Adria Gascon
Kobbi Nissim
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"The Privacy Blanket of the Shuffle Model"
50 / 90 papers shown
Title
Locally Differentially Private Frequency Estimation via Joint Randomized Response
Ye Zheng
Shafizur Rahman Seeam
Yidan Hu
Rui Zhang
Yanchao Zhang
64
0
0
15 May 2025
PREAMBLE: Private and Efficient Aggregation of Block Sparse Vectors and Applications
Hilal Asi
Vitaly Feldman
Hannah Keller
G. Rothblum
Kunal Talwar
FedML
117
1
0
14 Mar 2025
On the Robustness of LDP Protocols for Numerical Attributes under Data Poisoning Attacks
Xiaoguang Li
Zitao Li
Ninghui Li
Wenhai Sun
AAML
145
4
0
28 Jan 2025
Segmented Private Data Aggregation in the Multi-message Shuffle Model
Shaowei Wang
Hongqiao Chen
Sufen Zeng
Ruilin Yang
Hui Jiang
...
Kaiqi Yu
Rundong Mei
Shaozheng Huang
Wei Yang
Bangzhou Xin
FedML
128
0
0
31 Dec 2024
Nebula: Efficient, Private and Accurate Histogram Estimation
Ali Shahin Shamsabadi
Peter Snyder
Ralph Giles
A. Bellet
Hamed Haddadi
56
0
0
15 Sep 2024
Differentially Private Block-wise Gradient Shuffle for Deep Learning
Zilong Zhang
FedML
106
0
0
31 Jul 2024
Efficient Verifiable Differential Privacy with Input Authenticity in the Local and Shuffle Model
Tariq Bontekoe
Hassan Jameel Asghar
Fatih Turkmen
49
2
0
27 Jun 2024
Beyond Statistical Estimation: Differentially Private Individual Computation via Shuffling
Shaowei Wang
Changyu Dong
Xiangfu Song
Jin Li
Zhili Zhou
Di Wang
Han Wu
114
0
0
26 Jun 2024
RASE: Efficient Privacy-preserving Data Aggregation against Disclosure Attacks for IoTs
Zuyan Wang
Jun Tao
Dikai Zou
40
0
0
31 May 2024
FastLloyd: Federated, Accurate, Secure, and Tunable
k
k
k
-Means Clustering with Differential Privacy
Abdulrahman Diaa
Thomas Humphries
Florian Kerschbaum
FedML
108
0
0
03 May 2024
A Generalized Shuffle Framework for Privacy Amplification: Strengthening Privacy Guarantees and Enhancing Utility
E. Chen
Yang Cao
Yifei Ge
FedML
69
8
0
22 Dec 2023
Practical, Private Assurance of the Value of Collaboration
Hassan Jameel Asghar
Zhigang Lu
Zhongrui Zhao
Dali Kaafar
FedML
64
0
0
04 Oct 2023
Differentially Private Aggregation via Imperfect Shuffling
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Jelani Nelson
Samson Zhou
FedML
109
1
0
28 Aug 2023
Samplable Anonymous Aggregation for Private Federated Data Analysis
Kunal Talwar
Shan Wang
Audra McMillan
Vojta Jina
Vitaly Feldman
...
Congzheng Song
Karl Tarbe
Sebastian Vogt
L. Winstrom
Shundong Zhou
FedML
161
14
0
27 Jul 2023
Analyzing the Shuffle Model through the Lens of Quantitative Information Flow
Mireya Jurado
Ramon G. Gonze
Mário S. Alvim
C. Palamidessi
66
1
0
22 May 2023
Private Federated Statistics in an Interactive Setting
Audra McMillan
O. Javidbakht
Kunal Talwar
Elliot Briggs
Mike Chatzidakis
...
Paul J. Pelzl
Rehan Rishi
Congzheng Song
Shan Wang
Shundong Zhou
FedML
87
6
0
18 Nov 2022
Composition of Differential Privacy & Privacy Amplification by Subsampling
Thomas Steinke
166
54
0
02 Oct 2022
Private Read Update Write (PRUW) in Federated Submodel Learning (FSL): Communication Efficient Schemes With and Without Sparsification
Sajani Vithana
S. Ulukus
FedML
77
20
0
09 Sep 2022
FedPerm: Private and Robust Federated Learning by Parameter Permutation
Hamid Mozaffari
Virendra J. Marathe
D. Dice
FedML
85
4
0
16 Aug 2022
How Much Privacy Does Federated Learning with Secure Aggregation Guarantee?
A. Elkordy
Jiang Zhang
Yahya H. Ezzeldin
Konstantinos Psounis
A. Avestimehr
FedML
72
38
0
03 Aug 2022
Differentially Private Stochastic Linear Bandits: (Almost) for Free
Osama A. Hanna
Antonious M. Girgis
Christina Fragouli
Suhas Diggavi
FedML
80
18
0
07 Jul 2022
"You Can't Fix What You Can't Measure": Privately Measuring Demographic Performance Disparities in Federated Learning
Marc Juárez
Aleksandra Korolova
FedML
79
10
0
24 Jun 2022
Walking to Hide: Privacy Amplification via Random Message Exchanges in Network
Hao Wu
O. Ohrimenko
Anthony Wirth
FedML
54
1
0
20 Jun 2022
Distributed Differential Privacy in Multi-Armed Bandits
Sayak Ray Chowdhury
Xingyu Zhou
97
13
0
12 Jun 2022
Group privacy for personalized federated learning
Filippo Galli
Sayan Biswas
Kangsoo Jung
Tommaso Cucinotta
C. Palamidessi
FedML
77
12
0
07 Jun 2022
Impact of Sampling on Locally Differentially Private Data Collection
Sayan Biswas
Graham Cormode
Carsten Maple
FedML
74
0
0
02 Jun 2022
Private Federated Submodel Learning with Sparsification
Sajani Vithana
S. Ulukus
FedML
70
10
0
31 May 2022
Tight Differential Privacy Blanket for Shuffle Model
Sayan Biswas
Kangsoo Jung
C. Palamidessi
36
0
0
09 May 2022
Optimal Algorithms for Mean Estimation under Local Differential Privacy
Hilal Asi
Vitaly Feldman
Kunal Talwar
100
42
0
05 May 2022
Privacy-Aware Compression for Federated Data Analysis
Kamalika Chaudhuri
Chuan Guo
Michael G. Rabbat
FedML
75
27
0
15 Mar 2022
The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning
Wei-Ning Chen
Christopher A. Choquette-Choo
Peter Kairouz
A. Suresh
FedML
118
65
0
07 Mar 2022
Private Frequency Estimation via Projective Geometry
Vitaly Feldman
Jelani Nelson
Huy Le Nguyen
Kunal Talwar
96
21
0
01 Mar 2022
Differentially Private Speaker Anonymization
Ali Shahin Shamsabadi
B. M. L. Srivastava
A. Bellet
Nathalie Vauquier
Emmanuel Vincent
Mohamed Maouche
Marc Tommasi
Nicolas Papernot
MIACV
148
35
0
23 Feb 2022
Using Illustrations to Communicate Differential Privacy Trust Models: An Investigation of Users' Comprehension, Perception, and Data Sharing Decision
Aiping Xiong
Chuhao Wu
Tianhao Wang
R. Proctor
Jeremiah Blocki
Ninghui Li
S. Jha
60
13
0
21 Feb 2022
Shuffle Private Linear Contextual Bandits
Sayak Ray Chowdhury
Xingyu Zhou
FedML
98
27
0
11 Feb 2022
Aggregation and Transformation of Vector-Valued Messages in the Shuffle Model of Differential Privacy
Mary Scott
Graham Cormode
Carsten Maple
85
11
0
31 Jan 2022
Mitigating Leakage from Data Dependent Communications in Decentralized Computing using Differential Privacy
Riad Ladjel
N. Anciaux
A. Bellet
Guillaume Scerri
FedML
116
0
0
23 Dec 2021
Privacy Amplification via Shuffling for Linear Contextual Bandits
Evrard Garcelon
Kamalika Chaudhuri
Vianney Perchet
Matteo Pirotta
FedML
111
20
0
11 Dec 2021
Differentially Private Exploration in Reinforcement Learning with Linear Representation
Paul Luyo
Evrard Garcelon
A. Lazaric
Matteo Pirotta
139
11
0
02 Dec 2021
Differentially Private Federated Learning on Heterogeneous Data
Maxence Noble
A. Bellet
Aymeric Dieuleveut
FedML
86
110
0
17 Nov 2021
Optimal Compression of Locally Differentially Private Mechanisms
Abhin Shah
Wei-Ning Chen
Johannes Ballé
Peter Kairouz
Lucas Theis
91
42
0
29 Oct 2021
Differentially Private Aggregation in the Shuffle Model: Almost Central Accuracy in Almost a Single Message
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Rasmus Pagh
Amer Sinha
FedML
132
38
0
27 Sep 2021
Random Sampling Plus Fake Data: Multidimensional Frequency Estimates With Local Differential Privacy
Héber H. Arcolezi
Jean-François Couchot
Bechara al Bouna
Xiaokui Xiao
53
27
0
15 Sep 2021
Private Retrieval, Computing and Learning: Recent Progress and Future Challenges
S. Ulukus
Salman Avestimehr
Michael C. Gastpar
S. Jafar
Ravi Tandon
Chao Tian
FedML
116
69
0
30 Jul 2021
Renyi Differential Privacy of the Subsampled Shuffle Model in Distributed Learning
Antonious M. Girgis
Deepesh Data
Suhas Diggavi
FedML
74
22
0
19 Jul 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
279
422
0
14 Jul 2021
Asymptotically Optimal Locally Private Heavy Hitters via Parameterized Sketches
Hao Wu
Anthony Wirth
FedML
45
5
0
15 Jun 2021
Private Counting from Anonymous Messages: Near-Optimal Accuracy with Vanishing Communication Overhead
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Rasmus Pagh
FedML
99
51
0
08 Jun 2021
Differentially Private Multi-Armed Bandits in the Shuffle Model
J. Tenenbaum
Haim Kaplan
Yishay Mansour
Uri Stemmer
FedML
89
29
0
05 Jun 2021
Tight Accounting in the Shuffle Model of Differential Privacy
A. Koskela
Mikko A. Heikkilä
Antti Honkela
FedML
65
17
0
01 Jun 2021
1
2
Next