Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.08129
Cited By
A Mean Field Theory of Batch Normalization
21 February 2019
Greg Yang
Jeffrey Pennington
Vinay Rao
Jascha Narain Sohl-Dickstein
S. Schoenholz
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Mean Field Theory of Batch Normalization"
9 / 9 papers shown
Title
On Vanishing Gradients, Over-Smoothing, and Over-Squashing in GNNs: Bridging Recurrent and Graph Learning
Alvaro Arroyo
Alessio Gravina
Benjamin Gutteridge
Federico Barbero
Claudio Gallicchio
Xiaowen Dong
Michael M. Bronstein
P. Vandergheynst
111
10
0
15 Feb 2025
Residual Connections and Normalization Can Provably Prevent Oversmoothing in GNNs
Michael Scholkemper
Xinyi Wu
Ali Jadbabaie
Michael T. Schaub
187
8
0
05 Jun 2024
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
Greg Yang
109
199
0
28 Oct 2019
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Greg Yang
141
287
0
13 Feb 2019
Dynamical Isometry and a Mean Field Theory of LSTMs and GRUs
D. Gilboa
B. Chang
Minmin Chen
Greg Yang
S. Schoenholz
Ed H. Chi
Jeffrey Pennington
70
42
0
25 Jan 2019
Understanding Batch Normalization
Johan Bjorck
Carla P. Gomes
B. Selman
Kilian Q. Weinberger
146
610
0
01 Jun 2018
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
115
1,093
0
01 Nov 2017
The Shattered Gradients Problem: If resnets are the answer, then what is the question?
David Balduzzi
Marcus Frean
Lennox Leary
J. P. Lewis
Kurt Wan-Duo Ma
Brian McWilliams
ODL
68
404
0
28 Feb 2017
Exponential expressivity in deep neural networks through transient chaos
Ben Poole
Subhaneil Lahiri
M. Raghu
Jascha Narain Sohl-Dickstein
Surya Ganguli
88
591
0
16 Jun 2016
1