Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.07623
Cited By
advertorch v0.1: An Adversarial Robustness Toolbox based on PyTorch
20 February 2019
G. Ding
Luyu Wang
Xiaomeng Jin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"advertorch v0.1: An Adversarial Robustness Toolbox based on PyTorch"
38 / 38 papers shown
Title
How Do Diffusion Models Improve Adversarial Robustness?
Liu Yuezhang
Xue-Xin Wei
54
0
0
28 May 2025
Carefully Blending Adversarial Training, Purification, and Aggregation Improves Adversarial Robustness
Emanuele Ballarin
A. Ansuini
Luca Bortolussi
AAML
98
0
0
20 Feb 2025
On the Promise for Assurance of Differentiable Neurosymbolic Reasoning Paradigms
Luke E. Richards
Jessie Yaros
Jasen Babcock
Coung Ly
Robin Cosbey
Timothy Doster
Cynthia Matuszek
NAI
88
0
0
13 Feb 2025
Dual-Flow: Transferable Multi-Target, Instance-Agnostic Attacks via In-the-wild Cascading Flow Optimization
Yixiao Chen
Shikun Sun
Jianshu Li
Ruoyu Li
Zhe Li
Junliang Xing
AAML
164
0
0
04 Feb 2025
Dormant: Defending against Pose-driven Human Image Animation
Jiachen Zhou
Mingsi Wang
Tianlin Li
Guozhu Meng
Kai Chen
91
3
0
22 Sep 2024
One Perturbation is Enough: On Generating Universal Adversarial Perturbations against Vision-Language Pre-training Models
Hao Fang
Jiawei Kong
Wenbo Yu
Bin Chen
Jiawei Li
Hao Wu
Ke Xu
Ke Xu
AAML
VLM
75
13
0
08 Jun 2024
On Robust Reinforcement Learning with Lipschitz-Bounded Policy Networks
Nicholas H. Barbara
Ruigang Wang
I. Manchester
61
4
0
19 May 2024
Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks
Yonggan Fu
Qixuan Yu
Yang Zhang
Shan-Hung Wu
Ouyang Xu
David D. Cox
Yingyan Lin
AAML
OOD
59
29
0
26 Oct 2021
On the Sensitivity of Adversarial Robustness to Input Data Distributions
G. Ding
Kry Yik-Chau Lui
Xiaomeng Jin
Luyu Wang
Ruitong Huang
OOD
35
59
0
22 Feb 2019
MMA Training: Direct Input Space Margin Maximization through Adversarial Training
G. Ding
Yash Sharma
Kry Yik-Chau Lui
Ruitong Huang
AAML
49
272
0
06 Dec 2018
Is Data Clustering in Adversarial Settings Secure?
Battista Biggio
I. Pillai
Samuel Rota Buló
Andrea Valenza
Marcello Pelillo
Fabio Roli
AAML
23
129
0
25 Nov 2018
On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models
Sven Gowal
Krishnamurthy Dvijotham
Robert Stanforth
Rudy Bunel
Chongli Qin
J. Uesato
Relja Arandjelović
Timothy A. Mann
Pushmeet Kohli
AAML
48
551
0
30 Oct 2018
Are adversarial examples inevitable?
Ali Shafahi
Wenjie Huang
Christoph Studer
Soheil Feizi
Tom Goldstein
SILM
46
282
0
06 Sep 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
156
3,171
0
01 Feb 2018
Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach
Tsui-Wei Weng
Huan Zhang
Pin-Yu Chen
Jinfeng Yi
D. Su
Yupeng Gao
Cho-Jui Hsieh
Luca Daniel
AAML
54
466
0
31 Jan 2018
Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality
Xingjun Ma
Yue Liu
Yisen Wang
S. Erfani
S. Wijewickrema
Grant Schoenebeck
D. Song
Michael E. Houle
James Bailey
AAML
78
734
0
08 Jan 2018
Spatially Transformed Adversarial Examples
Chaowei Xiao
Jun-Yan Zhu
Yue Liu
Warren He
M. Liu
D. Song
AAML
56
520
0
08 Jan 2018
Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models
Wieland Brendel
Jonas Rauber
Matthias Bethge
AAML
61
1,335
0
12 Dec 2017
Provable defenses against adversarial examples via the convex outer adversarial polytope
Eric Wong
J. Zico Kolter
AAML
76
1,495
0
02 Nov 2017
Countering Adversarial Images using Input Transformations
Chuan Guo
Mayank Rana
Moustapha Cissé
Laurens van der Maaten
AAML
80
1,399
0
31 Oct 2017
Foolbox: A Python toolbox to benchmark the robustness of machine learning models
Jonas Rauber
Wieland Brendel
Matthias Bethge
AAML
40
283
0
13 Jul 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
208
11,962
0
19 Jun 2017
Classification regions of deep neural networks
Alhussein Fawzi
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
Stefano Soatto
54
51
0
26 May 2017
Parseval Networks: Improving Robustness to Adversarial Examples
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
109
800
0
28 Apr 2017
Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
Weilin Xu
David Evans
Yanjun Qi
AAML
48
1,248
0
04 Apr 2017
Detecting Adversarial Samples from Artifacts
Reuben Feinman
Ryan R. Curtin
S. Shintre
Andrew B. Gardner
AAML
71
892
0
01 Mar 2017
On Detecting Adversarial Perturbations
J. H. Metzen
Tim Genewein
Volker Fischer
Bastian Bischoff
AAML
49
947
0
14 Feb 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
290
1,849
0
03 Feb 2017
Simple Black-Box Adversarial Perturbations for Deep Networks
Nina Narodytska
S. Kasiviswanathan
AAML
48
237
0
19 Dec 2016
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
443
3,124
0
04 Nov 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
157
8,497
0
16 Aug 2016
A study of the effect of JPG compression on adversarial images
Gintare Karolina Dziugaite
Zoubin Ghahramani
Daniel M. Roy
AAML
64
532
0
02 Aug 2016
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
SILM
AAML
78
1,735
0
24 May 2016
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
57
3,947
0
24 Nov 2015
Adversarial Manipulation of Deep Representations
S. Sabour
Yanshuai Cao
Fartash Faghri
David J. Fleet
GAN
AAML
61
286
0
16 Nov 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
158
18,922
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
157
14,831
1
21 Dec 2013
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
Yoshua Bengio
Nicholas Léonard
Aaron Courville
296
3,099
0
15 Aug 2013
1