ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.06931
  4. Cited By
On the consistency of supervised learning with missing values

On the consistency of supervised learning with missing values

19 February 2019
Julie Josse
Jacob M. Chen
Nicolas Prost
Erwan Scornet
Gaël Varoquaux
ArXivPDFHTML

Papers citing "On the consistency of supervised learning with missing values"

18 / 18 papers shown
Title
Prediction Models That Learn to Avoid Missing Values
Prediction Models That Learn to Avoid Missing Values
Lena Stempfle
Anton Matsson
Newton Mwai
Fredrik D. Johansson
40
0
0
06 May 2025
Deep learning with missing data
Deep learning with missing data
Tianyi Ma
Tengyao Wang
R. Samworth
66
0
0
21 Apr 2025
Imputation for prediction: beware of diminishing returns
Imputation for prediction: beware of diminishing returns
Marine Le Morvan
Gaël Varoquaux
AI4TS
78
1
0
21 Feb 2025
Robust prediction under missingness shifts
Robust prediction under missingness shifts
P. Rockenschaub
Zhicong Xian
Alireza Zamanian
Marta Piperno
Octavia-Andreea Ciora
E. Pachl
Narges Ahmidi
OOD
50
0
0
24 Jun 2024
Random features models: a way to study the success of naive imputation
Random features models: a way to study the success of naive imputation
Alexis Ayme
Claire Boyer Lpsm
Aymeric Dieuleveut
Erwan Scornet
30
3
0
06 Feb 2024
Adaptive Optimization for Prediction with Missing Data
Adaptive Optimization for Prediction with Missing Data
Dimitris Bertsimas
A. Delarue
J. Pauphilet
31
1
0
02 Feb 2024
MINTY: Rule-based Models that Minimize the Need for Imputing Features
  with Missing Values
MINTY: Rule-based Models that Minimize the Need for Imputing Features with Missing Values
Lena Stempfle
Fredrik D. Johansson
29
2
0
23 Nov 2023
Algorithmic Recourse with Missing Values
Algorithmic Recourse with Missing Values
Kentaro Kanamori
Takuya Takagi
Ken Kobayashi
Yuichi Ike
28
2
0
28 Apr 2023
The Missing Indicator Method: From Low to High Dimensions
The Missing Indicator Method: From Low to High Dimensions
Mike Van Ness
Tomas M. Bosschieter
Roberto Halpin-Gregorio
Madeleine Udell
AI4TS
24
15
0
16 Nov 2022
Polar Encoding: A Simple Baseline Approach for Classification with
  Missing Values
Polar Encoding: A Simple Baseline Approach for Classification with Missing Values
O. Lenz
Daniel Peralta
Chris Cornelis
26
0
0
04 Oct 2022
PROMISSING: Pruning Missing Values in Neural Networks
PROMISSING: Pruning Missing Values in Neural Networks
S. M. Kia
N. M. Rad
Dan Opstal
B. V. Schie
A. Marquand
J. Pluim
W. Cahn
H. Schnack
VLM
29
4
0
03 Jun 2022
Benchmarking missing-values approaches for predictive models on health
  databases
Benchmarking missing-values approaches for predictive models on health databases
Alexandre Perez-Lebel
Gaël Varoquaux
Marine Le Morvan
Julie Josse
J B Poline
AI4TS
26
35
0
17 Feb 2022
Regression with Missing Data, a Comparison Study of TechniquesBased on
  Random Forests
Regression with Missing Data, a Comparison Study of TechniquesBased on Random Forests
Irving Gómez-Méndez
Émilien Joly
18
14
0
18 Oct 2021
Fairness without Imputation: A Decision Tree Approach for Fair
  Prediction with Missing Values
Fairness without Imputation: A Decision Tree Approach for Fair Prediction with Missing Values
Haewon Jeong
Hao Wang
Flavio du Pin Calmon
FaML
51
33
0
21 Sep 2021
Machine Learning-Based COVID-19 Patients Triage Algorithm using
  Patient-Generated Health Data from Nationwide Multicenter Database
Machine Learning-Based COVID-19 Patients Triage Algorithm using Patient-Generated Health Data from Nationwide Multicenter Database
Min Sue Park
Hyeontae Jo
Haeun Lee
S. Jung
H. Hwang
25
13
0
18 Sep 2021
MissDeepCausal: Causal Inference from Incomplete Data Using Deep Latent
  Variable Models
MissDeepCausal: Causal Inference from Incomplete Data Using Deep Latent Variable Models
Imke Mayer
Julie Josse
Félix Raimundo
Jean-Philippe Vert
CML
29
12
0
25 Feb 2020
ranger: A Fast Implementation of Random Forests for High Dimensional
  Data in C++ and R
ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R
Marvin N. Wright
A. Ziegler
93
2,732
0
18 Aug 2015
MissForest - nonparametric missing value imputation for mixed-type data
MissForest - nonparametric missing value imputation for mixed-type data
D. Stekhoven
Peter Buhlmann
177
4,222
0
04 May 2011
1