Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.06626
Cited By
Mockingbird: Defending Against Deep-Learning-Based Website Fingerprinting Attacks with Adversarial Traces
18 February 2019
Mohammad Saidur Rahman
Mohsen Imani
Nate Mathews
M. Wright
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Mockingbird: Defending Against Deep-Learning-Based Website Fingerprinting Attacks with Adversarial Traces"
30 / 30 papers shown
Title
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
68
1,825
0
06 May 2019
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems
Beidi Chen
Tharun Medini
James Farwell
Sameh Gobriel
Charlie Tai
Anshumali Shrivastava
58
103
0
07 Mar 2019
Tik-Tok: The Utility of Packet Timing in Website Fingerprinting Attacks
Mohammad Saidur Rahman
Payap Sirinam
Nate Mathews
K. Gangadhara
M. Wright
18
123
0
18 Feb 2019
Var-CNN: A Data-Efficient Website Fingerprinting Attack Based on Deep Learning
Sanjit Bhat
David Lu
Albert Kwon
S. Devadas
AAML
37
190
0
28 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
147
3,171
0
01 Feb 2018
Certified Defenses against Adversarial Examples
Aditi Raghunathan
Jacob Steinhardt
Percy Liang
AAML
76
967
0
29 Jan 2018
Deep Fingerprinting: Undermining Website Fingerprinting Defenses with Deep Learning
Payap Sirinam
Mohsen Imani
Marc Juárez
M. Wright
33
456
0
07 Jan 2018
A General Framework for Adversarial Examples with Objectives
Mahmood Sharif
Sruti Bhagavatula
Lujo Bauer
Michael K. Reiter
AAML
GAN
35
192
0
31 Dec 2017
Adversarial Patch
Tom B. Brown
Dandelion Mané
Aurko Roy
Martín Abadi
Justin Gilmer
AAML
50
1,093
0
27 Dec 2017
Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
Benoit Jacob
S. Kligys
Bo Chen
Menglong Zhu
Matthew Tang
Andrew G. Howard
Hartwig Adam
Dmitry Kalenichenko
MQ
110
3,090
0
15 Dec 2017
MagNet and "Efficient Defenses Against Adversarial Attacks" are Not Robust to Adversarial Examples
Nicholas Carlini
D. Wagner
AAML
36
247
0
22 Nov 2017
NISP: Pruning Networks using Neuron Importance Score Propagation
Ruichi Yu
Ang Li
Chun-Fu Chen
Jui-Hsin Lai
Vlad I. Morariu
Xintong Han
M. Gao
Ching-Yung Lin
L. Davis
53
798
0
16 Nov 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
188
11,962
0
19 Jun 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
90
1,851
0
20 May 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
157
2,712
0
19 May 2017
Bayes, not Naïve: Security Bounds on Website Fingerprinting Defenses
Giovanni Cherubin
44
37
0
24 Feb 2017
Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer
Sergey Zagoruyko
N. Komodakis
83
2,561
0
12 Dec 2016
Trained Ternary Quantization
Chenzhuo Zhu
Song Han
Huizi Mao
W. Dally
MQ
105
1,035
0
04 Dec 2016
Delving into Transferable Adversarial Examples and Black-box Attacks
Yanpei Liu
Xinyun Chen
Chang-rui Liu
D. Song
AAML
105
1,727
0
08 Nov 2016
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
437
3,124
0
04 Nov 2016
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
102
2,520
0
26 Oct 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
146
8,497
0
16 Aug 2016
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
32
3,656
0
08 Feb 2016
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
47
3,947
0
24 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
87
4,878
0
14 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
38
3,061
0
14 Nov 2015
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
170
8,793
0
01 Oct 2015
k-fingerprinting: a Robust Scalable Website Fingerprinting Technique
Jamie Hayes
G. Danezis
13
383
0
02 Sep 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
126
18,922
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
106
14,831
1
21 Dec 2013
1