ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.06455
  4. Cited By
SEGAN: Structure-Enhanced Generative Adversarial Network for Compressed
  Sensing MRI Reconstruction

SEGAN: Structure-Enhanced Generative Adversarial Network for Compressed Sensing MRI Reconstruction

18 February 2019
Zhongnian Li
Tao Zhang
Peng Wan
Daoqiang Zhang
    MedIm
    GAN
ArXivPDFHTML

Papers citing "SEGAN: Structure-Enhanced Generative Adversarial Network for Compressed Sensing MRI Reconstruction"

4 / 4 papers shown
Title
T2TD: Text-3D Generation Model based on Prior Knowledge Guidance
T2TD: Text-3D Generation Model based on Prior Knowledge Guidance
Weizhi Nie
Ruidong Chen
Weijie Wang
Bruno Lepri
N. Sebe
35
4
0
25 May 2023
Dual-Domain Self-Supervised Learning for Accelerated Non-Cartesian MRI
  Reconstruction
Dual-Domain Self-Supervised Learning for Accelerated Non-Cartesian MRI Reconstruction
Bo Zhou
Jo Schlemper
Neel Dey
Seyed Sadegh Mohseni Salehi
Kevin Sheth
Chi Liu
James S. Duncan
M. Sofka
OOD
45
17
0
18 Feb 2023
Homotopic Gradients of Generative Density Priors for MR Image
  Reconstruction
Homotopic Gradients of Generative Density Priors for MR Image Reconstruction
Cong Quan
Jinjie Zhou
Yuanzheng Zhu
Yang Chen
Shanshan Wang
Dong Liang
Qiegen Liu
DiffM
MedIm
27
26
0
14 Aug 2020
Wasserstein GANs for MR Imaging: from Paired to Unpaired Training
Wasserstein GANs for MR Imaging: from Paired to Unpaired Training
Ke Lei
Morteza Mardani
John M. Pauly
S. Vasanawala
GAN
MedIm
41
64
0
15 Oct 2019
1