Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.05888
Cited By
Bayesian Image Classification with Deep Convolutional Gaussian Processes
15 February 2019
Vincent Dutordoir
Mark van der Wilk
A. Artemev
J. Hensman
UQCV
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian Image Classification with Deep Convolutional Gaussian Processes"
14 / 14 papers shown
Title
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
23
10
0
01 Nov 2023
Skew Class-balanced Re-weighting for Unbiased Scene Graph Generation
Haeyong Kang
Chang D. Yoo
34
6
0
01 Jan 2023
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
29
0
0
27 Jun 2022
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Yonghui Fan
Yalin Wang
18
2
0
30 Oct 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
28
24
0
11 Jun 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
31
124
0
14 May 2021
GPflux: A Library for Deep Gaussian Processes
Vincent Dutordoir
Hugh Salimbeni
Eric Hambro
John Mcleod
Felix Leibfried
A. Artemev
Mark van der Wilk
J. Hensman
M. Deisenroth
S. T. John
GP
33
23
0
12 Apr 2021
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
21
107
0
24 Feb 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
42
49
0
27 Dec 2020
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
57
0
08 Nov 2020
A Bayesian Perspective on Training Speed and Model Selection
Clare Lyle
Lisa Schut
Binxin Ru
Y. Gal
Mark van der Wilk
42
24
0
27 Oct 2020
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
26
60
0
17 May 2020
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
40
94
0
02 Mar 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1