ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.05644
  4. Cited By
Active Perception in Adversarial Scenarios using Maximum Entropy Deep
  Reinforcement Learning

Active Perception in Adversarial Scenarios using Maximum Entropy Deep Reinforcement Learning

14 February 2019
Macheng Shen
Jonathan P. How
    AAML
ArXivPDFHTML

Papers citing "Active Perception in Adversarial Scenarios using Maximum Entropy Deep Reinforcement Learning"

3 / 3 papers shown
Title
Adversarial Training is Not Ready for Robot Learning
Adversarial Training is Not Ready for Robot Learning
Mathias Lechner
Ramin Hasani
Radu Grosu
Daniela Rus
T. Henzinger
AAML
38
34
0
15 Mar 2021
Controlling Information Capacity of Binary Neural Network
Controlling Information Capacity of Binary Neural Network
D. Ignatov
Andrey D. Ignatov
MQ
33
21
0
04 Aug 2020
Stabilising Experience Replay for Deep Multi-Agent Reinforcement
  Learning
Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning
Jakob N. Foerster
Nantas Nardelli
Gregory Farquhar
Triantafyllos Afouras
Philip Torr
Pushmeet Kohli
Shimon Whiteson
OffRL
119
595
0
28 Feb 2017
1