ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.05414
  4. Cited By
Deep learning algorithms out-perform veterinary pathologists in
  detecting the mitotically most active tumor region
v1v2v3 (latest)

Deep learning algorithms out-perform veterinary pathologists in detecting the mitotically most active tumor region

12 February 2019
Marc Aubreville
C. Bertram
Christian Marzahl
C. Gurtner
M. Dettwiler
A. Schmidt
F. Bartenschlager
Sophie Merz
Marco Fragoso
O. Kershaw
R. Klopfleisch
Andreas Maier
ArXiv (abs)PDFHTML

Papers citing "Deep learning algorithms out-perform veterinary pathologists in detecting the mitotically most active tumor region"

2 / 2 papers shown
Title
OncoPetNet: A Deep Learning based AI system for mitotic figure counting
  on H&E stained whole slide digital images in a large veterinary diagnostic
  lab setting
OncoPetNet: A Deep Learning based AI system for mitotic figure counting on H&E stained whole slide digital images in a large veterinary diagnostic lab setting
Michael Fitzke
Derick Whitley
Wilson Yau
Fernando Rodrigues
V. Fadeev
C. Bacmeister
Chris Carter
Jeffrey Edwards
M. Lungren
Mark Parkinson
57
5
0
17 Aug 2021
Are fast labeling methods reliable? A case study of computer-aided
  expert annotations on microscopy slides
Are fast labeling methods reliable? A case study of computer-aided expert annotations on microscopy slides
Christian Marzahl
C. Bertram
Marc Aubreville
Anne Petrick
Kristina Weiler
...
Alina Langenhagen
A. Jasensky
J. Voigt
R. Klopfleisch
Andreas Maier
57
16
0
13 Apr 2020
1