ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.04760
  4. Cited By
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian
  Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
v1v2v3 (latest)

Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation

13 February 2019
Greg Yang
ArXiv (abs)PDFHTML

Papers citing "Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation"

50 / 57 papers shown
Title
Conditional Temporal Neural Processes with Covariance Loss
Conditional Temporal Neural Processes with Covariance Loss
Boseon Yoo
Jiwoo Lee
Janghoon Ju
Seijun Chung
Soyeon Kim
Jaesik Choi
140
15
0
01 Apr 2025
On the Cone Effect in the Learning Dynamics
On the Cone Effect in the Learning Dynamics
Zhanpeng Zhou
Yongyi Yang
Jie Ren
Mahito Sugiyama
Junchi Yan
91
0
0
20 Mar 2025
Equivariant Neural Tangent Kernels
Equivariant Neural Tangent Kernels
Philipp Misof
Pan Kessel
Jan E. Gerken
176
0
0
10 Jun 2024
Neural Networks and Quantum Field Theory
Neural Networks and Quantum Field Theory
James Halverson
Anindita Maiti
Keegan Stoner
74
77
0
19 Aug 2020
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any
  Architecture are Gaussian Processes
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
Greg Yang
119
199
0
28 Oct 2019
A Mean Field Theory of Batch Normalization
A Mean Field Theory of Batch Normalization
Greg Yang
Jeffrey Pennington
Vinay Rao
Jascha Narain Sohl-Dickstein
S. Schoenholz
72
178
0
21 Feb 2019
Generalization Error Bounds of Gradient Descent for Learning
  Over-parameterized Deep ReLU Networks
Generalization Error Bounds of Gradient Descent for Learning Over-parameterized Deep ReLU Networks
Yuan Cao
Quanquan Gu
ODLMLTAI4CE
79
157
0
04 Feb 2019
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU
  Networks
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
190
448
0
21 Nov 2018
Learning and Generalization in Overparameterized Neural Networks, Going
  Beyond Two Layers
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
188
773
0
12 Nov 2018
A Convergence Theory for Deep Learning via Over-Parameterization
A Convergence Theory for Deep Learning via Over-Parameterization
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
AI4CEODL
264
1,463
0
09 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
Jason D. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
206
1,135
0
09 Nov 2018
Exploration by Random Network Distillation
Exploration by Random Network Distillation
Yuri Burda
Harrison Edwards
Amos Storkey
Oleg Klimov
159
1,332
0
30 Oct 2018
On the Convergence Rate of Training Recurrent Neural Networks
On the Convergence Rate of Training Recurrent Neural Networks
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
169
191
0
29 Oct 2018
A Gaussian Process perspective on Convolutional Neural Networks
A Gaussian Process perspective on Convolutional Neural Networks
Anastasia Borovykh
77
19
0
25 Oct 2018
Bayesian Deep Convolutional Networks with Many Channels are Gaussian
  Processes
Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes
Roman Novak
Lechao Xiao
Jaehoon Lee
Yasaman Bahri
Greg Yang
Jiri Hron
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCVBDL
65
309
0
11 Oct 2018
Deep convolutional Gaussian processes
Deep convolutional Gaussian processes
Kenneth Blomqvist
Samuel Kaski
Markus Heinonen
BDL
67
61
0
06 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLTODL
224
1,272
0
04 Oct 2018
Fisher Information and Natural Gradient Learning of Random Deep Networks
Fisher Information and Natural Gradient Learning of Random Deep Networks
S. Amari
Ryo Karakida
Masafumi Oizumi
62
36
0
22 Aug 2018
Deep Convolutional Networks as shallow Gaussian Processes
Deep Convolutional Networks as shallow Gaussian Processes
Adrià Garriga-Alonso
C. Rasmussen
Laurence Aitchison
BDLUQCV
109
271
0
16 Aug 2018
Large-Scale Study of Curiosity-Driven Learning
Large-Scale Study of Curiosity-Driven Learning
Yuri Burda
Harrison Edwards
Deepak Pathak
Amos Storkey
Trevor Darrell
Alexei A. Efros
LRM
69
704
0
13 Aug 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
267
3,203
0
20 Jun 2018
Dynamical Isometry and a Mean Field Theory of RNNs: Gating Enables
  Signal Propagation in Recurrent Neural Networks
Dynamical Isometry and a Mean Field Theory of RNNs: Gating Enables Signal Propagation in Recurrent Neural Networks
Minmin Chen
Jeffrey Pennington
S. Schoenholz
SyDaAI4CE
55
116
0
14 Jun 2018
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train
  10,000-Layer Vanilla Convolutional Neural Networks
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
301
353
0
14 Jun 2018
Randomized Prior Functions for Deep Reinforcement Learning
Randomized Prior Functions for Deep Reinforcement Learning
Ian Osband
John Aslanides
Albin Cassirer
UQCVBDL
76
379
0
08 Jun 2018
Deep Gaussian Processes with Convolutional Kernels
Deep Gaussian Processes with Convolutional Kernels
Vinayak Kumar
Vaibhav Singh
P. K. Srijith
Andreas C. Damianou
BDLGP
74
30
0
05 Jun 2018
Universal Statistics of Fisher Information in Deep Neural Networks: Mean
  Field Approach
Universal Statistics of Fisher Information in Deep Neural Networks: Mean Field Approach
Ryo Karakida
S. Akaho
S. Amari
FedML
152
145
0
04 Jun 2018
Entropy and mutual information in models of deep neural networks
Entropy and mutual information in models of deep neural networks
Marylou Gabrié
Andre Manoel
Clément Luneau
Jean Barbier
N. Macris
Florent Krzakala
Lenka Zdeborová
71
180
0
24 May 2018
Gaussian Process Behaviour in Wide Deep Neural Networks
Gaussian Process Behaviour in Wide Deep Neural Networks
A. G. Matthews
Mark Rowland
Jiri Hron
Richard Turner
Zoubin Ghahramani
BDL
147
559
0
30 Apr 2018
How to Start Training: The Effect of Initialization and Architecture
How to Start Training: The Effect of Initialization and Architecture
Boris Hanin
David Rolnick
71
255
0
05 Mar 2018
Mean Field Residual Networks: On the Edge of Chaos
Mean Field Residual Networks: On the Edge of Chaos
Greg Yang
S. Schoenholz
64
192
0
24 Dec 2017
Resurrecting the sigmoid in deep learning through dynamical isometry:
  theory and practice
Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice
Jeffrey Pennington
S. Schoenholz
Surya Ganguli
ODL
43
252
0
13 Nov 2017
Deep Neural Networks as Gaussian Processes
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCVBDL
131
1,093
0
01 Nov 2017
Additivity of Information in Multilayer Networks via Additive Gaussian
  Noise Transforms
Additivity of Information in Multilayer Networks via Additive Gaussian Noise Transforms
Galen Reeves
40
33
0
12 Oct 2017
Convolutional Gaussian Processes
Convolutional Gaussian Processes
Mark van der Wilk
C. Rasmussen
J. Hensman
BDL
71
132
0
06 Sep 2017
Exploring the Function Space of Deep-Learning Machines
Exploring the Function Space of Deep-Learning Machines
Yue Liu
D. Saad
PINN
59
25
0
04 Aug 2017
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in
  Gaussian Process Hybrid Deep Networks
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDLAAML
103
171
0
08 Jul 2017
Inference in Deep Networks in High Dimensions
Inference in Deep Networks in High Dimensions
A. Fletcher
S. Rangan
BDL
107
69
0
20 Jun 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
707
131,652
0
12 Jun 2017
Deep Information Propagation
Deep Information Propagation
S. Schoenholz
Justin Gilmer
Surya Ganguli
Jascha Narain Sohl-Dickstein
82
367
0
04 Nov 2016
Stochastic Variational Deep Kernel Learning
Stochastic Variational Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
106
267
0
01 Nov 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN3DV
775
36,813
0
25 Aug 2016
Layer Normalization
Layer Normalization
Jimmy Lei Ba
J. Kiros
Geoffrey E. Hinton
413
10,494
0
21 Jul 2016
Exponential expressivity in deep neural networks through transient chaos
Exponential expressivity in deep neural networks through transient chaos
Ben Poole
Subhaneil Lahiri
M. Raghu
Jascha Narain Sohl-Dickstein
Surya Ganguli
90
592
0
16 Jun 2016
Toward Deeper Understanding of Neural Networks: The Power of
  Initialization and a Dual View on Expressivity
Toward Deeper Understanding of Neural Networks: The Power of Initialization and a Dual View on Expressivity
Amit Daniely
Roy Frostig
Y. Singer
166
343
0
18 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,020
0
10 Dec 2015
Deep Kernel Learning
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
248
886
0
06 Nov 2015
Steps Toward Deep Kernel Methods from Infinite Neural Networks
Steps Toward Deep Kernel Methods from Infinite Neural Networks
Tamir Hazan
Tommi Jaakkola
80
83
0
20 Aug 2015
Deep Neural Networks with Random Gaussian Weights: A Universal
  Classification Strategy?
Deep Neural Networks with Random Gaussian Weights: A Universal Classification Strategy?
Raja Giryes
Guillermo Sapiro
A. Bronstein
104
187
0
30 Apr 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
463
43,305
0
11 Feb 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
  ImageNet Classification
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
326
18,625
0
06 Feb 2015
12
Next