Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.04674
Cited By
Towards moderate overparameterization: global convergence guarantees for training shallow neural networks
12 February 2019
Samet Oymak
Mahdi Soltanolkotabi
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Towards moderate overparameterization: global convergence guarantees for training shallow neural networks"
45 / 45 papers shown
Title
Reparameterization invariance in approximate Bayesian inference
Hrittik Roy
M. Miani
Carl Henrik Ek
Philipp Hennig
Marvin Pfortner
Lukas Tatzel
Søren Hauberg
BDL
92
9
0
05 Jun 2024
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
T. Getu
Georges Kaddoum
M. Bennis
76
1
0
13 Sep 2023
Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning
François Caron
Fadhel Ayed
Paul Jung
Hoileong Lee
Juho Lee
Hongseok Yang
115
2
0
02 Feb 2023
Generalization Guarantees for Neural Networks via Harnessing the Low-rank Structure of the Jacobian
Samet Oymak
Zalan Fabian
Mingchen Li
Mahdi Soltanolkotabi
MLT
66
88
0
12 Jun 2019
An Improved Analysis of Training Over-parameterized Deep Neural Networks
Difan Zou
Quanquan Gu
63
235
0
11 Jun 2019
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
238
928
0
26 Apr 2019
Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path?
Samet Oymak
Mahdi Soltanolkotabi
ODL
55
177
0
25 Dec 2018
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
198
448
0
21 Nov 2018
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
201
775
0
12 Nov 2018
A Convergence Theory for Deep Learning via Over-Parameterization
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
AI4CE
ODL
266
1,469
0
09 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
Jason D. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
229
1,136
0
09 Nov 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
233
1,276
0
04 Oct 2018
Gradient descent aligns the layers of deep linear networks
Ziwei Ji
Matus Telgarsky
123
257
0
04 Oct 2018
Stochastic Gradient Descent Learns State Equations with Nonlinear Activations
Samet Oymak
56
43
0
09 Sep 2018
Mean Field Analysis of Neural Networks: A Central Limit Theorem
Justin A. Sirignano
K. Spiliopoulos
MLT
77
194
0
28 Aug 2018
Learning Overparameterized Neural Networks via Stochastic Gradient Descent on Structured Data
Yuanzhi Li
Yingyu Liang
MLT
219
653
0
03 Aug 2018
Just Interpolate: Kernel "Ridgeless" Regression Can Generalize
Tengyuan Liang
Alexander Rakhlin
81
355
0
01 Aug 2018
Does data interpolation contradict statistical optimality?
M. Belkin
Alexander Rakhlin
Alexandre B. Tsybakov
88
220
0
25 Jun 2018
Overfitting or perfect fitting? Risk bounds for classification and regression rules that interpolate
M. Belkin
Daniel J. Hsu
P. Mitra
AI4CE
149
259
0
13 Jun 2018
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport
Lénaïc Chizat
Francis R. Bach
OT
214
737
0
24 May 2018
The Global Optimization Geometry of Shallow Linear Neural Networks
Zhihui Zhu
Daniel Soudry
Yonina C. Eldar
M. Wakin
ODL
73
36
0
13 May 2018
A Mean Field View of the Landscape of Two-Layers Neural Networks
Song Mei
Andrea Montanari
Phan-Minh Nguyen
MLT
105
862
0
18 Apr 2018
On the Local Minima of the Empirical Risk
Chi Jin
Lydia T. Liu
Rong Ge
Michael I. Jordan
FedML
138
56
0
25 Mar 2018
On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization
Sanjeev Arora
Nadav Cohen
Elad Hazan
108
487
0
19 Feb 2018
Spurious Valleys in Two-layer Neural Network Optimization Landscapes
Luca Venturi
Afonso S. Bandeira
Joan Bruna
60
74
0
18 Feb 2018
Stronger generalization bounds for deep nets via a compression approach
Sanjeev Arora
Rong Ge
Behnam Neyshabur
Yi Zhang
MLT
AI4CE
89
643
0
14 Feb 2018
To understand deep learning we need to understand kernel learning
M. Belkin
Siyuan Ma
Soumik Mandal
72
420
0
05 Feb 2018
Spurious Local Minima are Common in Two-Layer ReLU Neural Networks
Itay Safran
Ohad Shamir
182
265
0
24 Dec 2017
Size-Independent Sample Complexity of Neural Networks
Noah Golowich
Alexander Rakhlin
Ohad Shamir
154
551
0
18 Dec 2017
Learning One-hidden-layer Neural Networks with Landscape Design
Rong Ge
Jason D. Lee
Tengyu Ma
MLT
206
262
0
01 Nov 2017
SGD Learns Over-parameterized Networks that Provably Generalize on Linearly Separable Data
Alon Brutzkus
Amir Globerson
Eran Malach
Shai Shalev-Shwartz
MLT
156
279
0
27 Oct 2017
A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks
Behnam Neyshabur
Srinadh Bhojanapalli
Nathan Srebro
88
610
0
29 Jul 2017
Theoretical insights into the optimization landscape of over-parameterized shallow neural networks
Mahdi Soltanolkotabi
Adel Javanmard
Jason D. Lee
185
423
0
16 Jul 2017
Spectrally-normalized margin bounds for neural networks
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
212
1,225
0
26 Jun 2017
Empirical Analysis of the Hessian of Over-Parametrized Neural Networks
Levent Sagun
Utku Evci
V. U. Güney
Yann N. Dauphin
Léon Bottou
56
419
0
14 Jun 2017
Recovery Guarantees for One-hidden-layer Neural Networks
Kai Zhong
Zhao Song
Prateek Jain
Peter L. Bartlett
Inderjit S. Dhillon
MLT
181
337
0
10 Jun 2017
Global Guarantees for Enforcing Deep Generative Priors by Empirical Risk
Paul Hand
V. Voroninski
UQCV
143
138
0
22 May 2017
The Landscape of Deep Learning Algorithms
Pan Zhou
Jiashi Feng
63
24
0
19 May 2017
Learning ReLUs via Gradient Descent
Mahdi Soltanolkotabi
MLT
86
183
0
10 May 2017
Globally Optimal Gradient Descent for a ConvNet with Gaussian Inputs
Alon Brutzkus
Amir Globerson
MLT
173
313
0
26 Feb 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
351
4,636
0
10 Nov 2016
Entropy-SGD: Biasing Gradient Descent Into Wide Valleys
Pratik Chaudhari
A. Choromańska
Stefano Soatto
Yann LeCun
Carlo Baldassi
C. Borgs
J. Chayes
Levent Sagun
R. Zecchina
ODL
96
774
0
06 Nov 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
433
2,946
0
15 Sep 2016
The Landscape of Empirical Risk for Non-convex Losses
Song Mei
Yu Bai
Andrea Montanari
117
313
0
22 Jul 2016
No bad local minima: Data independent training error guarantees for multilayer neural networks
Daniel Soudry
Y. Carmon
202
236
0
26 May 2016
1