ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.04639
  4. Cited By
A Tunable Loss Function for Binary Classification

A Tunable Loss Function for Binary Classification

12 February 2019
Tyler Sypherd
Mario Díaz
Lalitha Sankar
Peter Kairouz
    MQ
ArXivPDFHTML

Papers citing "A Tunable Loss Function for Binary Classification"

4 / 4 papers shown
Title
Asymmetry of the Relative Entropy in the Regularization of Empirical Risk Minimization
Asymmetry of the Relative Entropy in the Regularization of Empirical Risk Minimization
Francisco Daunas
I. Esnaola
S. Perlaza
H. Vincent Poor
52
3
0
02 Oct 2024
Information-theoretic analysis of generalization capability of learning
  algorithms
Information-theoretic analysis of generalization capability of learning algorithms
Aolin Xu
Maxim Raginsky
163
446
0
22 May 2017
On Loss Functions for Deep Neural Networks in Classification
On Loss Functions for Deep Neural Networks in Classification
Katarzyna Janocha
Wojciech M. Czarnecki
UQCV
68
551
0
18 Feb 2017
The Landscape of Empirical Risk for Non-convex Losses
The Landscape of Empirical Risk for Non-convex Losses
Song Mei
Yu Bai
Andrea Montanari
111
312
0
22 Jul 2016
1