Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.04495
Cited By
The Cost of Privacy: Optimal Rates of Convergence for Parameter Estimation with Differential Privacy
12 February 2019
T. Tony Cai
Yichen Wang
Linjun Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Cost of Privacy: Optimal Rates of Convergence for Parameter Estimation with Differential Privacy"
37 / 37 papers shown
Title
How Private is Your Attention? Bridging Privacy with In-Context Learning
Soham Bonnerjee
Zhen Wei
Yeon
Anna Asch
Sagnik Nandy
Promit Ghosal
51
0
0
22 Apr 2025
Learning with Differentially Private (Sliced) Wasserstein Gradients
David Rodríguez-Vítores
Clément Lalanne
Jean-Michel Loubes
FedML
46
0
0
03 Feb 2025
Distributed Differentially Private Data Analytics via Secure Sketching
Jakob Burkhardt
Hannah Keller
Claudio Orlandi
Chris Schwiegelshohn
FedML
82
0
0
30 Nov 2024
Private Means and the Curious Incident of the Free Lunch
Jack Fitzsimons
James Honaker
Michael Shoemate
Vikrant Singhal
49
2
0
19 Aug 2024
Better Locally Private Sparse Estimation Given Multiple Samples Per User
Yuheng Ma
Ke Jia
Hanfang Yang
FedML
38
1
0
08 Aug 2024
On Differentially Private U Statistics
Kamalika Chaudhuri
Po-Ling Loh
Shourya Pandey
Purnamrita Sarkar
FedML
64
0
0
06 Jul 2024
Public-data Assisted Private Stochastic Optimization: Power and Limitations
Enayat Ullah
Michael Menart
Raef Bassily
Cristóbal Guzmán
Raman Arora
30
1
0
06 Mar 2024
General Inferential Limits Under Differential and Pufferfish Privacy
J. Bailie
Ruobin Gong
35
1
0
27 Jan 2024
Differentially Private Sliced Inverse Regression: Minimax Optimality and Algorithm
Xintao Xia
Linjun Zhang
Zhanrui Cai
44
0
0
16 Jan 2024
Differentially Private Non-convex Learning for Multi-layer Neural Networks
Hanpu Shen
Cheng-Long Wang
Zihang Xiang
Yiming Ying
Di Wang
49
7
0
12 Oct 2023
On the Complexity of Differentially Private Best-Arm Identification with Fixed Confidence
Achraf Azize
Marc Jourdan
Aymen Al Marjani
D. Basu
42
3
0
05 Sep 2023
Mean Estimation Under Heterogeneous Privacy: Some Privacy Can Be Free
Syomantak Chaudhuri
T. Courtade
30
4
0
27 Apr 2023
Score Attack: A Lower Bound Technique for Optimal Differentially Private Learning
T. Tony Cai
Yichen Wang
Linjun Zhang
46
16
0
13 Mar 2023
Differentially Private Distributed Bayesian Linear Regression with MCMC
Barics Alparslan
S. Yıldırım
cS. .Ilker Birbil
FedML
25
1
0
31 Jan 2023
Near Optimal Private and Robust Linear Regression
Xiyang Liu
Prateek Jain
Weihao Kong
Sewoong Oh
A. Suggala
41
9
0
30 Jan 2023
Differentially Private Confidence Intervals for Proportions under Stratified Random Sampling
Shurong Lin
Mark Bun
Marco Gaboardi
E. D. Kolaczyk
Adam D. Smith
18
5
0
19 Jan 2023
Differentially Private Image Classification from Features
Harsh Mehta
Walid Krichene
Abhradeep Thakurta
Alexey Kurakin
Ashok Cutkosky
52
7
0
24 Nov 2022
On the Impossible Safety of Large AI Models
El-Mahdi El-Mhamdi
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
L. Hoang
Rafael Pinot
Sébastien Rouault
John Stephan
32
31
0
30 Sep 2022
Analyzing the Differentially Private Theil-Sen Estimator for Simple Linear Regression
Jayshree Sarathy
Salil P. Vadhan
31
7
0
27 Jul 2022
Data Augmentation MCMC for Bayesian Inference from Privatized Data
Nianqiao P. Ju
Jordan Awan
Ruobin Gong
Vinayak A. Rao
32
23
0
01 Jun 2022
A Blessing of Dimensionality in Membership Inference through Regularization
Jasper Tan
Daniel LeJeune
Blake Mason
Hamid Javadi
Richard G. Baraniuk
32
18
0
27 May 2022
New Lower Bounds for Private Estimation and a Generalized Fingerprinting Lemma
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
FedML
42
26
0
17 May 2022
Private High-Dimensional Hypothesis Testing
Shyam Narayanan
FedML
40
11
0
03 Mar 2022
Differentially-Private Clustering of Easy Instances
E. Cohen
Haim Kaplan
Yishay Mansour
Uri Stemmer
Eliad Tsfadia
12
22
0
29 Dec 2021
Private Robust Estimation by Stabilizing Convex Relaxations
Pravesh Kothari
Pasin Manurangsi
A. Velingker
35
46
0
07 Dec 2021
Distribution-Invariant Differential Privacy
Xuan Bi
Xiaotong Shen
24
13
0
08 Nov 2021
Private sampling: a noiseless approach for generating differentially private synthetic data
M. Boedihardjo
Thomas Strohmer
Roman Vershynin
SyDa
29
14
0
30 Sep 2021
Covariance-Aware Private Mean Estimation Without Private Covariance Estimation
Gavin Brown
Marco Gaboardi
Adam D. Smith
Jonathan R. Ullman
Lydia Zakynthinou
FedML
28
48
0
24 Jun 2021
Differentially private inference via noisy optimization
Marco Avella-Medina
Casey Bradshaw
Po-Ling Loh
FedML
40
29
0
19 Mar 2021
The Cost of Privacy in Generalized Linear Models: Algorithms and Minimax Lower Bounds
T. Tony Cai
Yichen Wang
Linjun Zhang
FedML
43
20
0
08 Nov 2020
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians
Ishaq Aden-Ali
H. Ashtiani
Gautam Kamath
40
41
0
19 Oct 2020
CoinPress: Practical Private Mean and Covariance Estimation
Sourav Biswas
Yihe Dong
Gautam Kamath
Jonathan R. Ullman
39
115
0
11 Jun 2020
A Primer on Private Statistics
Gautam Kamath
Jonathan R. Ullman
38
48
0
30 Apr 2020
Differentially Private Assouad, Fano, and Le Cam
Jayadev Acharya
Ziteng Sun
Huanyu Zhang
FedML
23
57
0
14 Apr 2020
Private Identity Testing for High-Dimensional Distributions
C. Canonne
Gautam Kamath
Audra McMillan
Jonathan R. Ullman
Lydia Zakynthinou
37
36
0
28 May 2019
Geometrizing rates of convergence under local differential privacy constraints
Angelika Rohde
Lukas Steinberger
27
10
0
03 May 2018
Privately Learning High-Dimensional Distributions
Gautam Kamath
Jerry Li
Vikrant Singhal
Jonathan R. Ullman
FedML
72
148
0
01 May 2018
1