ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.04495
  4. Cited By
The Cost of Privacy: Optimal Rates of Convergence for Parameter
  Estimation with Differential Privacy

The Cost of Privacy: Optimal Rates of Convergence for Parameter Estimation with Differential Privacy

12 February 2019
T. Tony Cai
Yichen Wang
Linjun Zhang
ArXivPDFHTML

Papers citing "The Cost of Privacy: Optimal Rates of Convergence for Parameter Estimation with Differential Privacy"

37 / 37 papers shown
Title
How Private is Your Attention? Bridging Privacy with In-Context Learning
How Private is Your Attention? Bridging Privacy with In-Context Learning
Soham Bonnerjee
Zhen Wei
Yeon
Anna Asch
Sagnik Nandy
Promit Ghosal
51
0
0
22 Apr 2025
Learning with Differentially Private (Sliced) Wasserstein Gradients
Learning with Differentially Private (Sliced) Wasserstein Gradients
David Rodríguez-Vítores
Clément Lalanne
Jean-Michel Loubes
FedML
46
0
0
03 Feb 2025
Distributed Differentially Private Data Analytics via Secure Sketching
Distributed Differentially Private Data Analytics via Secure Sketching
Jakob Burkhardt
Hannah Keller
Claudio Orlandi
Chris Schwiegelshohn
FedML
82
0
0
30 Nov 2024
Private Means and the Curious Incident of the Free Lunch
Private Means and the Curious Incident of the Free Lunch
Jack Fitzsimons
James Honaker
Michael Shoemate
Vikrant Singhal
49
2
0
19 Aug 2024
Better Locally Private Sparse Estimation Given Multiple Samples Per User
Better Locally Private Sparse Estimation Given Multiple Samples Per User
Yuheng Ma
Ke Jia
Hanfang Yang
FedML
38
1
0
08 Aug 2024
On Differentially Private U Statistics
On Differentially Private U Statistics
Kamalika Chaudhuri
Po-Ling Loh
Shourya Pandey
Purnamrita Sarkar
FedML
64
0
0
06 Jul 2024
Public-data Assisted Private Stochastic Optimization: Power and
  Limitations
Public-data Assisted Private Stochastic Optimization: Power and Limitations
Enayat Ullah
Michael Menart
Raef Bassily
Cristóbal Guzmán
Raman Arora
30
1
0
06 Mar 2024
General Inferential Limits Under Differential and Pufferfish Privacy
General Inferential Limits Under Differential and Pufferfish Privacy
J. Bailie
Ruobin Gong
35
1
0
27 Jan 2024
Differentially Private Sliced Inverse Regression: Minimax Optimality and Algorithm
Differentially Private Sliced Inverse Regression: Minimax Optimality and Algorithm
Xintao Xia
Linjun Zhang
Zhanrui Cai
44
0
0
16 Jan 2024
Differentially Private Non-convex Learning for Multi-layer Neural
  Networks
Differentially Private Non-convex Learning for Multi-layer Neural Networks
Hanpu Shen
Cheng-Long Wang
Zihang Xiang
Yiming Ying
Di Wang
49
7
0
12 Oct 2023
On the Complexity of Differentially Private Best-Arm Identification with
  Fixed Confidence
On the Complexity of Differentially Private Best-Arm Identification with Fixed Confidence
Achraf Azize
Marc Jourdan
Aymen Al Marjani
D. Basu
42
3
0
05 Sep 2023
Mean Estimation Under Heterogeneous Privacy: Some Privacy Can Be Free
Mean Estimation Under Heterogeneous Privacy: Some Privacy Can Be Free
Syomantak Chaudhuri
T. Courtade
30
4
0
27 Apr 2023
Score Attack: A Lower Bound Technique for Optimal Differentially Private
  Learning
Score Attack: A Lower Bound Technique for Optimal Differentially Private Learning
T. Tony Cai
Yichen Wang
Linjun Zhang
46
16
0
13 Mar 2023
Differentially Private Distributed Bayesian Linear Regression with MCMC
Differentially Private Distributed Bayesian Linear Regression with MCMC
Barics Alparslan
S. Yıldırım
cS. .Ilker Birbil
FedML
25
1
0
31 Jan 2023
Near Optimal Private and Robust Linear Regression
Near Optimal Private and Robust Linear Regression
Xiyang Liu
Prateek Jain
Weihao Kong
Sewoong Oh
A. Suggala
41
9
0
30 Jan 2023
Differentially Private Confidence Intervals for Proportions under
  Stratified Random Sampling
Differentially Private Confidence Intervals for Proportions under Stratified Random Sampling
Shurong Lin
Mark Bun
Marco Gaboardi
E. D. Kolaczyk
Adam D. Smith
18
5
0
19 Jan 2023
Differentially Private Image Classification from Features
Differentially Private Image Classification from Features
Harsh Mehta
Walid Krichene
Abhradeep Thakurta
Alexey Kurakin
Ashok Cutkosky
52
7
0
24 Nov 2022
On the Impossible Safety of Large AI Models
On the Impossible Safety of Large AI Models
El-Mahdi El-Mhamdi
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
L. Hoang
Rafael Pinot
Sébastien Rouault
John Stephan
32
31
0
30 Sep 2022
Analyzing the Differentially Private Theil-Sen Estimator for Simple
  Linear Regression
Analyzing the Differentially Private Theil-Sen Estimator for Simple Linear Regression
Jayshree Sarathy
Salil P. Vadhan
31
7
0
27 Jul 2022
Data Augmentation MCMC for Bayesian Inference from Privatized Data
Data Augmentation MCMC for Bayesian Inference from Privatized Data
Nianqiao P. Ju
Jordan Awan
Ruobin Gong
Vinayak A. Rao
32
23
0
01 Jun 2022
A Blessing of Dimensionality in Membership Inference through
  Regularization
A Blessing of Dimensionality in Membership Inference through Regularization
Jasper Tan
Daniel LeJeune
Blake Mason
Hamid Javadi
Richard G. Baraniuk
32
18
0
27 May 2022
New Lower Bounds for Private Estimation and a Generalized Fingerprinting
  Lemma
New Lower Bounds for Private Estimation and a Generalized Fingerprinting Lemma
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
FedML
42
26
0
17 May 2022
Private High-Dimensional Hypothesis Testing
Private High-Dimensional Hypothesis Testing
Shyam Narayanan
FedML
40
11
0
03 Mar 2022
Differentially-Private Clustering of Easy Instances
Differentially-Private Clustering of Easy Instances
E. Cohen
Haim Kaplan
Yishay Mansour
Uri Stemmer
Eliad Tsfadia
12
22
0
29 Dec 2021
Private Robust Estimation by Stabilizing Convex Relaxations
Private Robust Estimation by Stabilizing Convex Relaxations
Pravesh Kothari
Pasin Manurangsi
A. Velingker
35
46
0
07 Dec 2021
Distribution-Invariant Differential Privacy
Distribution-Invariant Differential Privacy
Xuan Bi
Xiaotong Shen
24
13
0
08 Nov 2021
Private sampling: a noiseless approach for generating differentially
  private synthetic data
Private sampling: a noiseless approach for generating differentially private synthetic data
M. Boedihardjo
Thomas Strohmer
Roman Vershynin
SyDa
29
14
0
30 Sep 2021
Covariance-Aware Private Mean Estimation Without Private Covariance
  Estimation
Covariance-Aware Private Mean Estimation Without Private Covariance Estimation
Gavin Brown
Marco Gaboardi
Adam D. Smith
Jonathan R. Ullman
Lydia Zakynthinou
FedML
28
48
0
24 Jun 2021
Differentially private inference via noisy optimization
Differentially private inference via noisy optimization
Marco Avella-Medina
Casey Bradshaw
Po-Ling Loh
FedML
40
29
0
19 Mar 2021
The Cost of Privacy in Generalized Linear Models: Algorithms and Minimax
  Lower Bounds
The Cost of Privacy in Generalized Linear Models: Algorithms and Minimax Lower Bounds
T. Tony Cai
Yichen Wang
Linjun Zhang
FedML
43
20
0
08 Nov 2020
On the Sample Complexity of Privately Learning Unbounded
  High-Dimensional Gaussians
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians
Ishaq Aden-Ali
H. Ashtiani
Gautam Kamath
40
41
0
19 Oct 2020
CoinPress: Practical Private Mean and Covariance Estimation
CoinPress: Practical Private Mean and Covariance Estimation
Sourav Biswas
Yihe Dong
Gautam Kamath
Jonathan R. Ullman
39
115
0
11 Jun 2020
A Primer on Private Statistics
A Primer on Private Statistics
Gautam Kamath
Jonathan R. Ullman
38
48
0
30 Apr 2020
Differentially Private Assouad, Fano, and Le Cam
Differentially Private Assouad, Fano, and Le Cam
Jayadev Acharya
Ziteng Sun
Huanyu Zhang
FedML
23
57
0
14 Apr 2020
Private Identity Testing for High-Dimensional Distributions
Private Identity Testing for High-Dimensional Distributions
C. Canonne
Gautam Kamath
Audra McMillan
Jonathan R. Ullman
Lydia Zakynthinou
37
36
0
28 May 2019
Geometrizing rates of convergence under local differential privacy
  constraints
Geometrizing rates of convergence under local differential privacy constraints
Angelika Rohde
Lukas Steinberger
27
10
0
03 May 2018
Privately Learning High-Dimensional Distributions
Privately Learning High-Dimensional Distributions
Gautam Kamath
Jerry Li
Vikrant Singhal
Jonathan R. Ullman
FedML
72
148
0
01 May 2018
1