ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.03993
  4. Cited By
Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning

Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning

11 February 2019
Frederik Benzing
M. Gauy
Asier Mujika
A. Martinsson
Angelika Steger
ArXivPDFHTML

Papers citing "Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning"

19 / 19 papers shown
Title
On Unbiased Low-Rank Approximation with Minimum Distortion
On Unbiased Low-Rank Approximation with Minimum Distortion
Leighton Barnes
Stephen Cameron
Benjamin Howard
19
0
0
12 May 2025
Convergence Analysis of Real-time Recurrent Learning (RTRL) for a class of Recurrent Neural Networks
Convergence Analysis of Real-time Recurrent Learning (RTRL) for a class of Recurrent Neural Networks
Samuel Chun-Hei Lam
Justin A. Sirignano
K. Spiliopoulos
50
0
0
14 Jan 2025
Mind the truncation gap: challenges of learning on dynamic graphs with recurrent architectures
Mind the truncation gap: challenges of learning on dynamic graphs with recurrent architectures
Joao Bravo
Jacopo Bono
Pedro Saleiro
Hugo Ferreira
P. Bizarro
32
0
0
31 Dec 2024
Estimating Post-Synaptic Effects for Online Training of Feed-Forward
  SNNs
Estimating Post-Synaptic Effects for Online Training of Feed-Forward SNNs
Thomas M. Summe
Clemens J. S. Schaefer
Siddharth Joshi
27
1
0
07 Nov 2023
Exploring the Promise and Limits of Real-Time Recurrent Learning
Exploring the Promise and Limits of Real-Time Recurrent Learning
Kazuki Irie
Anand Gopalakrishnan
Jürgen Schmidhuber
19
15
0
30 May 2023
Online learning of long-range dependencies
Online learning of long-range dependencies
Nicolas Zucchet
Robert Meier
Simon Schug
Asier Mujika
João Sacramento
CLL
39
18
0
25 May 2023
Low-Variance Gradient Estimation in Unrolled Computation Graphs with
  ES-Single
Low-Variance Gradient Estimation in Unrolled Computation Graphs with ES-Single
Paul Vicol
Zico Kolter
Kevin Swersky
13
6
0
21 Apr 2023
Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution
  Strategies
Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution Strategies
Oscar Li
James Harrison
Jascha Narain Sohl-Dickstein
Virginia Smith
Luke Metz
44
5
0
21 Apr 2023
Amortized Proximal Optimization
Amortized Proximal Optimization
Juhan Bae
Paul Vicol
Jeff Z. HaoChen
Roger C. Grosse
ODL
25
14
0
28 Feb 2022
Gradient Descent on Neurons and its Link to Approximate Second-Order
  Optimization
Gradient Descent on Neurons and its Link to Approximate Second-Order Optimization
Frederik Benzing
ODL
37
23
0
28 Jan 2022
Unbiased Gradient Estimation in Unrolled Computation Graphs with
  Persistent Evolution Strategies
Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies
Paul Vicol
Luke Metz
Jascha Narain Sohl-Dickstein
19
67
0
27 Dec 2021
Prediction of the Position of External Markers Using a Recurrent Neural
  Network Trained With Unbiased Online Recurrent Optimization for Safe Lung
  Cancer Radiotherapy
Prediction of the Position of External Markers Using a Recurrent Neural Network Trained With Unbiased Online Recurrent Optimization for Safe Lung Cancer Radiotherapy
Michel Pohl
Mitsuru Uesaka
Hiroyuki Takahashi
K. Demachi
R. B. Chhatkuli
25
5
0
02 Jun 2021
Slower is Better: Revisiting the Forgetting Mechanism in LSTM for Slower
  Information Decay
Slower is Better: Revisiting the Forgetting Mechanism in LSTM for Slower Information Decay
H. Chien
Javier S. Turek
Nicole M. Beckage
Vy A. Vo
C. Honey
Ted Willke
14
15
0
12 May 2021
Low-Rank Training of Deep Neural Networks for Emerging Memory Technology
Low-Rank Training of Deep Neural Networks for Emerging Memory Technology
Albert Gural
P. Nadeau
M. Tikekar
B. Murmann
23
5
0
08 Sep 2020
Online Spatio-Temporal Learning in Deep Neural Networks
Online Spatio-Temporal Learning in Deep Neural Networks
Thomas Bohnstingl
Stanislaw Wo'zniak
Wolfgang Maass
A. Pantazi
E. Eleftheriou
21
43
0
24 Jul 2020
A Practical Sparse Approximation for Real Time Recurrent Learning
A Practical Sparse Approximation for Real Time Recurrent Learning
Jacob Menick
Erich Elsen
Utku Evci
Simon Osindero
Karen Simonyan
Alex Graves
13
31
0
12 Jun 2020
Decoupling Hierarchical Recurrent Neural Networks With Locally
  Computable Losses
Decoupling Hierarchical Recurrent Neural Networks With Locally Computable Losses
Asier Mujika
Felix Weissenberger
Angelika Steger
8
0
0
11 Oct 2019
A Unified Framework of Online Learning Algorithms for Training Recurrent
  Neural Networks
A Unified Framework of Online Learning Algorithms for Training Recurrent Neural Networks
O. Marschall
Kyunghyun Cho
Cristina Savin
FedML
28
72
0
05 Jul 2019
General Value Function Networks
General Value Function Networks
M. Schlegel
Andrew Jacobsen
Zaheer Abbas
Andrew Patterson
Adam White
Martha White
24
30
0
18 Jul 2018
1