Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.03228
Cited By
A Smoother Way to Train Structured Prediction Models
8 February 2019
Krishna Pillutla
Vincent Roulet
Sham Kakade
Zaïd Harchaoui
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Smoother Way to Train Structured Prediction Models"
11 / 11 papers shown
Title
Stochastic Variance Reduction Methods for Saddle-Point Problems
B. Palaniappan
Francis R. Bach
115
212
0
20 May 2016
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
131
1,823
0
01 Jul 2014
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Julien Mairal
144
318
0
18 Feb 2014
Minimizing Finite Sums with the Stochastic Average Gradient
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
312
1,245
0
10 Sep 2013
Loopy Belief Propagation for Approximate Inference: An Empirical Study
Kevin P. Murphy
Yair Weiss
Michael I. Jordan
3DV
121
1,882
0
23 Jan 2013
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark Schmidt
Francis R. Bach
176
260
0
10 Dec 2012
An Efficient Message-Passing Algorithm for the M-Best MAP Problem
Dhruv Batra
66
29
0
16 Oct 2012
Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
174
1,033
0
10 Sep 2012
A Stochastic Gradient Method with an Exponential Convergence Rate for Finite Training Sets
Nicolas Le Roux
Mark Schmidt
Francis R. Bach
ODL
68
104
0
28 Feb 2012
Natural Language Processing (almost) from Scratch
R. Collobert
Jason Weston
Léon Bottou
Michael Karlen
Koray Kavukcuoglu
Pavel P. Kuksa
173
7,721
0
02 Mar 2011
Learning as Search Optimization: Approximate Large Margin Methods for Structured Prediction
Hal Daumé
D. Marcu
98
279
0
04 Jul 2009
1