ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.02860
  4. Cited By
Crop Yield Prediction Using Deep Neural Networks

Crop Yield Prediction Using Deep Neural Networks

7 February 2019
S. Khaki
Lizhi Wang
ArXivPDFHTML

Papers citing "Crop Yield Prediction Using Deep Neural Networks"

8 / 8 papers shown
Title
Learning county from pixels: Corn yield prediction with attention-weighted multiple instance learning
Xiaoyu Wang
Yuchi Ma
Qunying Huang
Zhengwei Yang
Zhou Zhang
132
1
0
17 Feb 2025
On the Generalizability of Foundation Models for Crop Type Mapping
On the Generalizability of Foundation Models for Crop Type Mapping
Yi-Chia Chang
Adam J. Stewart
Favyen Bastani
Piper Wolters
Shreya Kannan
George R. Huber
Jingtong Wang
Arindam Banerjee
62
1
0
14 Sep 2024
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
344
18,300
0
27 May 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.5K
192,638
0
10 Dec 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
361
43,154
0
11 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
972
149,474
0
22 Dec 2014
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
187
4,653
0
21 Dec 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
342
43,511
0
17 Sep 2014
1