ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.02588
  4. Cited By
Self-Adjusting Mutation Rates with Provably Optimal Success Rules

Self-Adjusting Mutation Rates with Provably Optimal Success Rules

7 February 2019
Benjamin Doerr
Carola Doerr
Johannes Lengler
ArXivPDFHTML

Papers citing "Self-Adjusting Mutation Rates with Provably Optimal Success Rules"

6 / 6 papers shown
Title
Multi-parameter Control for the (1+($λ$,$λ$))-GA on OneMax via Deep Reinforcement Learning
Multi-parameter Control for the (1+(λλλ,λλλ))-GA on OneMax via Deep Reinforcement Learning
Tai Nguyen
Phong Le
Carola Doerr
Nguyen Dang
27
0
0
19 May 2025
An information-theoretic evolutionary algorithm
An information-theoretic evolutionary algorithm
A. Berny
14
1
0
12 Apr 2023
OneMax is not the Easiest Function for Fitness Improvements
OneMax is not the Easiest Function for Fitness Improvements
Marc Kaufmann
Maxime Larcher
Johannes Lengler
Xun Zou
LRM
20
6
0
14 Apr 2022
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm
  Configuration
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration
André Biedenkapp
Nguyen Dang
Martin S. Krejca
Frank Hutter
Carola Doerr
34
8
0
07 Feb 2022
Stagnation Detection with Randomized Local Search
Stagnation Detection with Randomized Local Search
A. Rajabi
Carsten Witt
23
30
0
28 Jan 2021
A Survey on Recent Progress in the Theory of Evolutionary Algorithms for
  Discrete Optimization
A Survey on Recent Progress in the Theory of Evolutionary Algorithms for Discrete Optimization
Benjamin Doerr
Frank Neumann
19
31
0
30 Jun 2020
1