ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.02366
  4. Cited By
Negative eigenvalues of the Hessian in deep neural networks

Negative eigenvalues of the Hessian in deep neural networks

6 February 2019
Guillaume Alain
Nicolas Le Roux
Pierre-Antoine Manzagol
ArXivPDFHTML

Papers citing "Negative eigenvalues of the Hessian in deep neural networks"

28 / 28 papers shown
Title
Towards Quantifying the Hessian Structure of Neural Networks
Towards Quantifying the Hessian Structure of Neural Networks
Zhaorui Dong
Yushun Zhang
Zhi-Quan Luo
Jianfeng Yao
Ruoyu Sun
31
0
0
05 May 2025
Parameter Symmetry Breaking and Restoration Determines the Hierarchical Learning in AI Systems
Parameter Symmetry Breaking and Restoration Determines the Hierarchical Learning in AI Systems
Liu Ziyin
Yizhou Xu
T. Poggio
Isaac Chuang
52
4
0
07 Feb 2025
Nesterov acceleration in benignly non-convex landscapes
Nesterov acceleration in benignly non-convex landscapes
Kanan Gupta
Stephan Wojtowytsch
42
2
0
10 Oct 2024
Visualizing, Rethinking, and Mining the Loss Landscape of Deep Neural
  Networks
Visualizing, Rethinking, and Mining the Loss Landscape of Deep Neural Networks
Xin-Chun Li
Lan Li
De-Chuan Zhan
41
2
0
21 May 2024
A qualitative difference between gradient flows of convex functions in
  finite- and infinite-dimensional Hilbert spaces
A qualitative difference between gradient flows of convex functions in finite- and infinite-dimensional Hilbert spaces
Jonathan W. Siegel
Stephan Wojtowytsch
21
3
0
26 Oct 2023
Symmetry Induces Structure and Constraint of Learning
Symmetry Induces Structure and Constraint of Learning
Liu Ziyin
34
10
0
29 Sep 2023
Unveiling the Hessian's Connection to the Decision Boundary
Unveiling the Hessian's Connection to the Decision Boundary
Mahalakshmi Sabanayagam
Freya Behrens
Urte Adomaityte
Anna Dawid
30
5
0
12 Jun 2023
Revisiting the Fragility of Influence Functions
Revisiting the Fragility of Influence Functions
Jacob R. Epifano
Ravichandran Ramachandran
A. Masino
Ghulam Rasool
TDI
27
14
0
22 Mar 2023
Escaping Saddle Points for Effective Generalization on Class-Imbalanced
  Data
Escaping Saddle Points for Effective Generalization on Class-Imbalanced Data
Harsh Rangwani
Sumukh K Aithal
Mayank Mishra
R. Venkatesh Babu
31
29
0
28 Dec 2022
Improving Robust Generalization by Direct PAC-Bayesian Bound
  Minimization
Improving Robust Generalization by Direct PAC-Bayesian Bound Minimization
Zifa Wang
Nan Ding
Tomer Levinboim
Xi Chen
Radu Soricut
AAML
37
5
0
22 Nov 2022
Visualizing high-dimensional loss landscapes with Hessian directions
Visualizing high-dimensional loss landscapes with Hessian directions
Lucas Böttcher
Gregory R. Wheeler
37
13
0
28 Aug 2022
Curvature-informed multi-task learning for graph networks
Curvature-informed multi-task learning for graph networks
Alexander New
M. Pekala
Nam Q. Le
Janna Domenico
C. Piatko
Christopher D. Stiles
25
4
0
02 Aug 2022
Diffusion Curvature for Estimating Local Curvature in High Dimensional
  Data
Diffusion Curvature for Estimating Local Curvature in High Dimensional Data
Dhananjay Bhaskar
Kincaid MacDonald
O. Fasina
Dawson Thomas
Bastian Alexander Rieck
Ian M. Adelstein
Smita Krishnaswamy
DiffM
25
7
0
08 Jun 2022
Complexity from Adaptive-Symmetries Breaking: Global Minima in the
  Statistical Mechanics of Deep Neural Networks
Complexity from Adaptive-Symmetries Breaking: Global Minima in the Statistical Mechanics of Deep Neural Networks
Shaun Li
AI4CE
46
0
0
03 Jan 2022
SGD with a Constant Large Learning Rate Can Converge to Local Maxima
SGD with a Constant Large Learning Rate Can Converge to Local Maxima
Liu Ziyin
Botao Li
James B. Simon
Masakuni Ueda
29
8
0
25 Jul 2021
Combating Mode Collapse in GAN training: An Empirical Analysis using
  Hessian Eigenvalues
Combating Mode Collapse in GAN training: An Empirical Analysis using Hessian Eigenvalues
Ricard Durall
Avraam Chatzimichailidis
P. Labus
J. Keuper
GAN
30
58
0
17 Dec 2020
Traces of Class/Cross-Class Structure Pervade Deep Learning Spectra
Traces of Class/Cross-Class Structure Pervade Deep Learning Spectra
Vardan Papyan
14
76
0
27 Aug 2020
The Break-Even Point on Optimization Trajectories of Deep Neural
  Networks
The Break-Even Point on Optimization Trajectories of Deep Neural Networks
Stanislaw Jastrzebski
Maciej Szymczak
Stanislav Fort
Devansh Arpit
Jacek Tabor
Kyunghyun Cho
Krzysztof J. Geras
50
155
0
21 Feb 2020
DDPNOpt: Differential Dynamic Programming Neural Optimizer
DDPNOpt: Differential Dynamic Programming Neural Optimizer
Guan-Horng Liu
T. Chen
Evangelos A. Theodorou
27
7
0
20 Feb 2020
Low Rank Saddle Free Newton: A Scalable Method for Stochastic Nonconvex
  Optimization
Low Rank Saddle Free Newton: A Scalable Method for Stochastic Nonconvex Optimization
Thomas O'Leary-Roseberry
Nick Alger
Omar Ghattas
ODL
37
9
0
07 Feb 2020
Epistemic Uncertainty Quantification in Deep Learning Classification by
  the Delta Method
Epistemic Uncertainty Quantification in Deep Learning Classification by the Delta Method
G. K. Nilsen
A. Munthe-Kaas
H. Skaug
M. Brun
UQCV
8
0
0
02 Dec 2019
SGD momentum optimizer with step estimation by online parabola model
SGD momentum optimizer with step estimation by online parabola model
J. Duda
ODL
21
22
0
16 Jul 2019
A Closer Look at the Optimization Landscapes of Generative Adversarial
  Networks
A Closer Look at the Optimization Landscapes of Generative Adversarial Networks
Hugo Berard
Gauthier Gidel
Amjad Almahairi
Pascal Vincent
Simon Lacoste-Julien
GAN
20
64
0
11 Jun 2019
A Geometric Modeling of Occam's Razor in Deep Learning
A Geometric Modeling of Occam's Razor in Deep Learning
Ke Sun
Frank Nielsen
16
5
0
27 May 2019
Adaptive norms for deep learning with regularized Newton methods
Adaptive norms for deep learning with regularized Newton methods
Jonas Köhler
Leonard Adolphs
Aurelien Lucchi
ODL
9
11
0
22 May 2019
Improving SGD convergence by online linear regression of gradients in
  multiple statistically relevant directions
Improving SGD convergence by online linear regression of gradients in multiple statistically relevant directions
J. Duda
ODL
12
1
0
31 Jan 2019
Interpreting Adversarial Robustness: A View from Decision Surface in
  Input Space
Interpreting Adversarial Robustness: A View from Decision Surface in Input Space
Fuxun Yu
Chenchen Liu
Yanzhi Wang
Liang Zhao
Xiang Chen
AAML
OOD
36
27
0
29 Sep 2018
The Loss Surfaces of Multilayer Networks
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
186
1,186
0
30 Nov 2014
1