Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.01846
Cited By
Distribution-Dependent Analysis of Gibbs-ERM Principle
5 February 2019
Ilja Kuzborskij
Nicolò Cesa-Bianchi
Csaba Szepesvári
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Distribution-Dependent Analysis of Gibbs-ERM Principle"
9 / 9 papers shown
Title
A PAC-Bayesian Link Between Generalisation and Flat Minima
Maxime Haddouche
Paul Viallard
Umut Simsekli
Benjamin Guedj
80
4
0
13 Feb 2024
Iterate averaging as regularization for stochastic gradient descent
Gergely Neu
Lorenzo Rosasco
MoMe
71
61
0
22 Feb 2018
Local Optimality and Generalization Guarantees for the Langevin Algorithm via Empirical Metastability
Belinda Tzen
Tengyuan Liang
Maxim Raginsky
40
32
0
18 Feb 2018
Information-theoretic analysis of generalization capability of learning algorithms
Aolin Xu
Maxim Raginsky
153
445
0
22 May 2017
Frequentist Consistency of Variational Bayes
Yixin Wang
David M. Blei
BDL
101
208
0
09 May 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
70
521
0
13 Feb 2017
Fast Rates for Empirical Risk Minimization of Strict Saddle Problems
Alon Gonen
Shai Shalev-Shwartz
62
30
0
16 Jan 2017
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
408
2,935
0
15 Sep 2016
A Variational Analysis of Stochastic Gradient Algorithms
Stephan Mandt
Matthew D. Hoffman
David M. Blei
47
161
0
08 Feb 2016
1