ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.01846
  4. Cited By
Distribution-Dependent Analysis of Gibbs-ERM Principle

Distribution-Dependent Analysis of Gibbs-ERM Principle

5 February 2019
Ilja Kuzborskij
Nicolò Cesa-Bianchi
Csaba Szepesvári
ArXivPDFHTML

Papers citing "Distribution-Dependent Analysis of Gibbs-ERM Principle"

9 / 9 papers shown
Title
A PAC-Bayesian Link Between Generalisation and Flat Minima
A PAC-Bayesian Link Between Generalisation and Flat Minima
Maxime Haddouche
Paul Viallard
Umut Simsekli
Benjamin Guedj
80
4
0
13 Feb 2024
Iterate averaging as regularization for stochastic gradient descent
Iterate averaging as regularization for stochastic gradient descent
Gergely Neu
Lorenzo Rosasco
MoMe
71
61
0
22 Feb 2018
Local Optimality and Generalization Guarantees for the Langevin
  Algorithm via Empirical Metastability
Local Optimality and Generalization Guarantees for the Langevin Algorithm via Empirical Metastability
Belinda Tzen
Tengyuan Liang
Maxim Raginsky
40
32
0
18 Feb 2018
Information-theoretic analysis of generalization capability of learning
  algorithms
Information-theoretic analysis of generalization capability of learning algorithms
Aolin Xu
Maxim Raginsky
153
445
0
22 May 2017
Frequentist Consistency of Variational Bayes
Frequentist Consistency of Variational Bayes
Yixin Wang
David M. Blei
BDL
101
208
0
09 May 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a
  nonasymptotic analysis
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
70
521
0
13 Feb 2017
Fast Rates for Empirical Risk Minimization of Strict Saddle Problems
Fast Rates for Empirical Risk Minimization of Strict Saddle Problems
Alon Gonen
Shai Shalev-Shwartz
62
30
0
16 Jan 2017
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
408
2,935
0
15 Sep 2016
A Variational Analysis of Stochastic Gradient Algorithms
A Variational Analysis of Stochastic Gradient Algorithms
Stephan Mandt
Matthew D. Hoffman
David M. Blei
47
161
0
08 Feb 2016
1