Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.01599
Cited By
Deep backward schemes for high-dimensional nonlinear PDEs
5 February 2019
Côme Huré
H. Pham
X. Warin
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep backward schemes for high-dimensional nonlinear PDEs"
15 / 15 papers shown
Title
NSGA-PINN: A Multi-Objective Optimization Method for Physics-Informed Neural Network Training
B.-L. Lu
Christian Moya
Guang Lin
PINN
37
11
0
03 Mar 2023
A deep learning approach to the probabilistic numerical solution of path-dependent partial differential equations
Jiang Yu Nguwi
Nicolas Privault
49
5
0
28 Sep 2022
Convergence of a robust deep FBSDE method for stochastic control
Kristoffer Andersson
Adam Andersson
C. Oosterlee
37
19
0
18 Jan 2022
SympOCnet: Solving optimal control problems with applications to high-dimensional multi-agent path planning problems
Tingwei Meng
Zhen Zhang
Jérome Darbon
George Karniadakis
32
15
0
14 Jan 2022
Neural network architectures using min-plus algebra for solving certain high dimensional optimal control problems and Hamilton-Jacobi PDEs
Jérome Darbon
P. Dower
Tingwei Meng
14
22
0
07 May 2021
Solving non-linear Kolmogorov equations in large dimensions by using deep learning: a numerical comparison of discretization schemes
Raffaele Marino
N. Macris
29
16
0
09 Dec 2020
Robust pricing and hedging via neural SDEs
Patryk Gierjatowicz
Marc Sabate Vidales
David Siska
Lukasz Szpruch
Zan Zuric
27
34
0
08 Jul 2020
Space-time deep neural network approximations for high-dimensional partial differential equations
F. Hornung
Arnulf Jentzen
Diyora Salimova
AI4CE
34
19
0
03 Jun 2020
Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space
Nikolas Nusken
Lorenz Richter
AI4CE
38
105
0
11 May 2020
Extensions of the Deep Galerkin Method
A. Al-Aradi
Adolfo Correia
D. Naiff
G. Jardim
Yuri F. Saporito
10
27
0
30 Nov 2019
Uniform error estimates for artificial neural network approximations for heat equations
Lukas Gonon
Philipp Grohs
Arnulf Jentzen
David Kofler
David Siska
37
34
0
20 Nov 2019
Deep Neural Network Framework Based on Backward Stochastic Differential Equations for Pricing and Hedging American Options in High Dimensions
Yangang Chen
J. Wan
19
59
0
25 Sep 2019
Space-time error estimates for deep neural network approximations for differential equations
Philipp Grohs
F. Hornung
Arnulf Jentzen
Philipp Zimmermann
34
33
0
11 Aug 2019
Deep splitting method for parabolic PDEs
C. Beck
S. Becker
Patrick Cheridito
Arnulf Jentzen
Ariel Neufeld
34
126
0
08 Jul 2019
Unbiased deep solvers for linear parametric PDEs
Marc Sabate Vidales
David Siska
Lukasz Szpruch
OOD
32
7
0
11 Oct 2018
1