Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.01148
Cited By
Theoretical evidence for adversarial robustness through randomization
4 February 2019
Rafael Pinot
Laurent Meunier
Alexandre Araujo
H. Kashima
Florian Yger
Cédric Gouy-Pailler
Jamal Atif
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Theoretical evidence for adversarial robustness through randomization"
18 / 18 papers shown
Title
A Survey of Neural Network Robustness Assessment in Image Recognition
Jie Wang
Jun Ai
Minyan Lu
Haoran Su
Dan Yu
Yutao Zhang
Junda Zhu
Jingyu Liu
AAML
32
3
0
12 Apr 2024
LipSim: A Provably Robust Perceptual Similarity Metric
Sara Ghazanfari
Alexandre Araujo
Prashanth Krishnamurthy
Farshad Khorrami
Siddharth Garg
46
5
0
27 Oct 2023
Pre-trained Encoders in Self-Supervised Learning Improve Secure and Privacy-preserving Supervised Learning
Hongbin Liu
Wenjie Qu
Jinyuan Jia
Neil Zhenqiang Gong
SSL
28
6
0
06 Dec 2022
Enhancing Quantum Adversarial Robustness by Randomized Encodings
Weiyuan Gong
D. Yuan
Weikang Li
D. Deng
AAML
24
19
0
05 Dec 2022
Causal Information Bottleneck Boosts Adversarial Robustness of Deep Neural Network
Hua Hua
Jun Yan
Xi Fang
Weiquan Huang
Huilin Yin
Wancheng Ge
AAML
25
1
0
25 Oct 2022
Towards Evading the Limits of Randomized Smoothing: A Theoretical Analysis
Raphael Ettedgui
Alexandre Araujo
Rafael Pinot
Y. Chevaleyre
Jamal Atif
AAML
34
3
0
03 Jun 2022
Provably Efficient Black-Box Action Poisoning Attacks Against Reinforcement Learning
Guanlin Liu
Lifeng Lai
AAML
32
34
0
09 Oct 2021
ROPUST: Improving Robustness through Fine-tuning with Photonic Processors and Synthetic Gradients
Alessandro Cappelli
Julien Launay
Laurent Meunier
Ruben Ohana
Iacopo Poli
AAML
29
4
0
06 Jul 2021
Learning distinct features helps, provably
Firas Laakom
Jenni Raitoharju
Alexandros Iosifidis
Moncef Gabbouj
MLT
36
6
0
10 Jun 2021
Mixed Nash Equilibria in the Adversarial Examples Game
Laurent Meunier
M. Scetbon
Rafael Pinot
Jamal Atif
Y. Chevaleyre
AAML
23
29
0
13 Feb 2021
Almost Tight L0-norm Certified Robustness of Top-k Predictions against Adversarial Perturbations
Jinyuan Jia
Binghui Wang
Xiaoyu Cao
Hongbin Liu
Neil Zhenqiang Gong
21
24
0
15 Nov 2020
A Le Cam Type Bound for Adversarial Learning and Applications
Qiuling Xu
Kevin Bello
Jean Honorio
AAML
23
1
0
01 Jul 2020
Calibrated Surrogate Losses for Adversarially Robust Classification
Han Bao
Clayton Scott
Masashi Sugiyama
29
45
0
28 May 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
72
63
0
02 Mar 2020
Towards Rapid and Robust Adversarial Training with One-Step Attacks
Leo Schwinn
René Raab
Björn Eskofier
AAML
33
6
0
24 Feb 2020
A unified view on differential privacy and robustness to adversarial examples
Rafael Pinot
Florian Yger
Cédric Gouy-Pailler
Jamal Atif
AAML
21
17
0
19 Jun 2019
Adversarial examples from computational constraints
Sébastien Bubeck
Eric Price
Ilya P. Razenshteyn
AAML
65
230
0
25 May 2018
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
317
5,847
0
08 Jul 2016
1