Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.01147
Cited By
Is Spiking Secure? A Comparative Study on the Security Vulnerabilities of Spiking and Deep Neural Networks
4 February 2019
Alberto Marchisio
Giorgio Nanfa
Faiq Khalid
Muhammad Abdullah Hanif
Maurizio Martina
Mohamed Bennai
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Is Spiking Secure? A Comparative Study on the Security Vulnerabilities of Spiking and Deep Neural Networks"
14 / 14 papers shown
Title
FAdeML: Understanding the Impact of Pre-Processing Noise Filtering on Adversarial Machine Learning
Faiq Khalid
Muhammad Abdullah Hanif
Semeen Rehman
Junaid Qadir
Mohamed Bennai
AAML
34
34
0
04 Nov 2018
Adversarial Examples: Opportunities and Challenges
Jiliang Zhang
Chen Li
AAML
53
233
0
13 Sep 2018
Are adversarial examples inevitable?
Ali Shafahi
Wenjie Huang
Christoph Studer
Soheil Feizi
Tom Goldstein
SILM
53
282
0
06 Sep 2018
Deep Learning in Spiking Neural Networks
A. Tavanaei
M. Ghodrati
Saeed Reza Kheradpisheh
T. Masquelier
Anthony Maida
52
1,071
0
22 Apr 2018
Towards Imperceptible and Robust Adversarial Example Attacks against Neural Networks
Bo Luo
Yannan Liu
Lingxiao Wei
Q. Xu
AAML
51
142
0
15 Jan 2018
Weighted Contrastive Divergence
E. Romero
F. Mazzanti
Jordi Delgado
David Buchaca Prats
12
23
0
08 Jan 2018
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
269
12,029
0
19 Jun 2017
Enhancing Robustness of Machine Learning Systems via Data Transformations
A. Bhagoji
Daniel Cullina
Chawin Sitawarin
Prateek Mittal
AAML
48
231
0
09 Apr 2017
Detecting Adversarial Samples from Artifacts
Reuben Feinman
Ryan R. Curtin
S. Shintre
Andrew B. Gardner
AAML
90
892
0
01 Mar 2017
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
517
5,893
0
08 Jul 2016
evt_MNIST: A spike based version of traditional MNIST
Mazdak Fatahi
M. Ahmadi
Mahyar Shahsavari
A. Ahmadi
P. Devienne
29
23
0
22 Apr 2016
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
66
3,676
0
08 Feb 2016
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
233
19,017
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
239
14,893
1
21 Dec 2013
1