ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.01078
  4. Cited By
Saliency Tubes: Visual Explanations for Spatio-Temporal Convolutions

Saliency Tubes: Visual Explanations for Spatio-Temporal Convolutions

4 February 2019
Alexandros Stergiou
G. Kapidis
Grigorios Kalliatakis
C. Chrysoulas
R. Veltkamp
R. Poppe
    FAtt
ArXivPDFHTML

Papers citing "Saliency Tubes: Visual Explanations for Spatio-Temporal Convolutions"

28 / 28 papers shown
Title
Analyzing Human-Human Interactions: A Survey
Analyzing Human-Human Interactions: A Survey
Alexandros Stergiou
R. Poppe
51
14
0
31 Jul 2018
Multi-Fiber Networks for Video Recognition
Multi-Fiber Networks for Video Recognition
Yunpeng Chen
Yannis Kalantidis
Jianshu Li
Shuicheng Yan
Jiashi Feng
CVBM
105
218
0
30 Jul 2018
Scaling Egocentric Vision: The EPIC-KITCHENS Dataset
Scaling Egocentric Vision: The EPIC-KITCHENS Dataset
Dima Damen
Hazel Doughty
G. Farinella
Sanja Fidler
Antonino Furnari
...
Davide Moltisanti
Jonathan Munro
Toby Perrett
Will Price
Michael Wray
EgoV
123
1,030
0
08 Apr 2018
Excitation Backprop for RNNs
Excitation Backprop for RNNs
Sarah Adel Bargal
Andrea Zunino
Donghyun Kim
Jianming Zhang
Vittorio Murino
Stan Sclaroff
135
48
0
18 Nov 2017
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Aditya Chattopadhyay
Anirban Sarkar
Prantik Howlader
V. Balasubramanian
FAtt
112
2,300
0
30 Oct 2017
Interpreting CNN Knowledge via an Explanatory Graph
Interpreting CNN Knowledge via an Explanatory Graph
Quanshi Zhang
Ruiming Cao
Feng Shi
Ying Nian Wu
Song-Chun Zhu
FAtt
GNN
SSL
56
242
0
05 Aug 2017
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
288
2,264
0
24 Jun 2017
Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
João Carreira
Andrew Zisserman
232
8,019
0
22 May 2017
Network Dissection: Quantifying Interpretability of Deep Visual
  Representations
Network Dissection: Quantifying Interpretability of Deep Visual Representations
David Bau
Bolei Zhou
A. Khosla
A. Oliva
Antonio Torralba
MILM
FAtt
146
1,515
1
19 Apr 2017
Growing Interpretable Part Graphs on ConvNets via Multi-Shot Learning
Growing Interpretable Part Graphs on ConvNets via Multi-Shot Learning
Quanshi Zhang
Ruiming Cao
Ying Nian Wu
Song-Chun Zhu
50
70
0
14 Nov 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
303
20,023
0
07 Oct 2016
Temporal Segment Networks: Towards Good Practices for Deep Action
  Recognition
Temporal Segment Networks: Towards Good Practices for Deep Action Recognition
Limin Wang
Yuanjun Xiong
Zhe Wang
Yu Qiao
Dahua Lin
Xiaoou Tang
Luc Van Gool
ViT
105
3,835
0
02 Aug 2016
Top-down Neural Attention by Excitation Backprop
Top-down Neural Attention by Excitation Backprop
Jianming Zhang
Zhe Lin
Jonathan Brandt
Xiaohui Shen
Stan Sclaroff
81
947
0
01 Aug 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,990
0
16 Feb 2016
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
250
9,319
0
14 Dec 2015
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,020
0
10 Dec 2015
Understanding Neural Networks Through Deep Visualization
Understanding Neural Networks Through Deep Visualization
J. Yosinski
Jeff Clune
Anh Totti Nguyen
Thomas J. Fuchs
Hod Lipson
FAtt
AI4CE
122
1,871
0
22 Jun 2015
Inverting Visual Representations with Convolutional Networks
Inverting Visual Representations with Convolutional Networks
Alexey Dosovitskiy
Thomas Brox
SSL
FAtt
65
665
0
09 Jun 2015
Visualizing and Understanding Recurrent Networks
Visualizing and Understanding Recurrent Networks
A. Karpathy
Justin Johnson
Li Fei-Fei
HAI
118
1,101
0
05 Jun 2015
Microsoft COCO Captions: Data Collection and Evaluation Server
Microsoft COCO Captions: Data Collection and Evaluation Server
Xinlei Chen
Hao Fang
Nayeon Lee
Ramakrishna Vedantam
Saurabh Gupta
Piotr Dollar
C. L. Zitnick
215
2,478
0
01 Apr 2015
Object Detectors Emerge in Deep Scene CNNs
Object Detectors Emerge in Deep Scene CNNs
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
ObjD
145
1,283
0
22 Dec 2014
Understanding Deep Image Representations by Inverting Them
Understanding Deep Image Representations by Inverting Them
Aravindh Mahendran
Andrea Vedaldi
FAtt
126
1,962
0
26 Nov 2014
Finding Action Tubes
Finding Action Tubes
Georgia Gkioxari
Jitendra Malik
67
599
0
21 Nov 2014
Show and Tell: A Neural Image Caption Generator
Show and Tell: A Neural Image Caption Generator
Oriol Vinyals
Alexander Toshev
Samy Bengio
D. Erhan
3DV
243
6,029
0
17 Nov 2014
Two-Stream Convolutional Networks for Action Recognition in Videos
Two-Stream Convolutional Networks for Action Recognition in Videos
Karen Simonyan
Andrew Zisserman
247
7,535
0
09 Jun 2014
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
595
15,882
0
12 Nov 2013
Rich feature hierarchies for accurate object detection and semantic
  segmentation
Rich feature hierarchies for accurate object detection and semantic segmentation
Ross B. Girshick
Jeff Donahue
Trevor Darrell
Jitendra Malik
ObjD
289
26,193
0
11 Nov 2013
UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild
UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild
K. Soomro
Amir Zamir
M. Shah
CLIP
VGen
152
6,148
0
03 Dec 2012
1