Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.00981
Cited By
Learning Counterfactual Representations for Estimating Individual Dose-Response Curves
3 February 2019
Patrick Schwab
Lorenz Linhardt
Stefan Bauer
J. M. Buhmann
W. Karlen
CML
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Counterfactual Representations for Estimating Individual Dose-Response Curves"
29 / 29 papers shown
Title
Leveraging a Simulator for Learning Causal Representations from Post-Treatment Covariates for CATE
Lokesh Nagalapatti
Pranava Singhal
Avishek Ghosh
Sunita Sarawagi
CML
81
0
0
07 Feb 2025
A Deep Subgrouping Framework for Precision Drug Repurposing via Emulating Clinical Trials on Real-world Patient Data
Seungyeon Lee
Ruoqi Liu
Feixiong Cheng
Ping Zhang
23
0
0
31 Dec 2024
Estimating Long-term Heterogeneous Dose-response Curve: Generalization Bound Leveraging Optimal Transport Weights
Zeqin Yang
Weilin Chen
Ruichu Cai
Yuguang Yan
Zhifeng Hao
Zhipeng Yu
Zhichao Zou
Jixing Xu
Zhen Peng
Jiecheng Guo
64
3
0
27 Jun 2024
Learning Decision Policies with Instrumental Variables through Double Machine Learning
Daqian Shao
Ashkan Soleymani
Francesco Quinzan
Marta Z. Kwiatkowska
42
1
0
14 May 2024
Defining Expertise: Applications to Treatment Effect Estimation
Alihan Huyuk
Qiyao Wei
Alicia Curth
M. Schaar
CML
40
2
0
01 Mar 2024
Causal Machine Learning for Cost-Effective Allocation of Development Aid
Milan Kuzmanovic
Dennis Frauen
Tobias Hatt
Stefan Feuerriegel
32
7
0
30 Jan 2024
Adversarially Balanced Representation for Continuous Treatment Effect Estimation
Amirreza Kazemi
Martin Ester
CML
OOD
40
3
0
17 Dec 2023
Counterfactual Explanations of Neural Network-Generated Response Curves
Giorgio Morales
John W. Sheppard
24
1
0
08 Apr 2023
Towards Learning and Explaining Indirect Causal Effects in Neural Networks
Abbaavaram Gowtham Reddy
Saketh Bachu
Harsh Nilesh Pathak
Ben Godfrey
V. Balasubramanian
V. Varshaneya
Satya Narayanan Kar
CML
31
0
0
24 Mar 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Erdun Gao
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
57
11
0
29 Jan 2023
Data-Driven Estimation of Heterogeneous Treatment Effects
Christopher Tran
Keith Burghardt
Kristina Lerman
Elena Zheleva
CML
30
1
0
16 Jan 2023
Deep Causal Learning for Robotic Intelligence
Yong Li
CML
37
5
0
23 Dec 2022
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
36
11
0
07 Nov 2022
CausalBench: A Large-scale Benchmark for Network Inference from Single-cell Perturbation Data
Mathieu Chevalley
Yusuf Roohani
Arash Mehrjou
J. Leskovec
Patrick Schwab
CML
26
37
0
31 Oct 2022
Disentangling Causal Effects from Sets of Interventions in the Presence of Unobserved Confounders
Olivier Jeunen
Ciarán M. Gilligan-Lee
Rishabh Mehrotra
M. Lalmas
CML
42
12
0
11 Oct 2022
Transfer Learning on Heterogeneous Feature Spaces for Treatment Effects Estimation
Ioana Bica
M. Schaar
OOD
CML
33
20
0
08 Oct 2022
Learning Instrumental Variable from Data Fusion for Treatment Effect Estimation
Anpeng Wu
Kun Kuang
Ruoxuan Xiong
Minqing Zhu
Yuxuan Liu
Bo Li
Furui Liu
Zhihua Wang
Fei Wu
CML
33
7
0
23 Aug 2022
Learning to Infer Counterfactuals: Meta-Learning for Estimating Multiple Imbalanced Treatment Effects
Guanglin Zhou
Lina Yao
Xiwei Xu
Chen Wang
Liming Zhu
OOD
CML
BDL
30
2
0
13 Aug 2022
Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability
Jonathan Crabbé
Alicia Curth
Ioana Bica
M. Schaar
CML
22
16
0
16 Jun 2022
Generalization bounds and algorithms for estimating conditional average treatment effect of dosage
Alexis Bellot
Anish Dhir
G. Prando
CML
18
11
0
29 May 2022
Scalable Sensitivity and Uncertainty Analysis for Causal-Effect Estimates of Continuous-Valued Interventions
Andrew Jesson
A. Douglas
P. Manshausen
Maelys Solal
N. Meinshausen
P. Stier
Y. Gal
Uri Shalit
CML
26
26
0
21 Apr 2022
Multi-Task Adversarial Learning for Treatment Effect Estimation in Basket Trials
Zhixuan Chu
S. Rathbun
Sheng Li
CML
27
10
0
10 Mar 2022
Estimating the average causal effect of intervention in continuous variables using machine learning
Yoshiaki Kitazawa
CML
8
1
0
08 Mar 2022
Exploring Transformer Backbones for Heterogeneous Treatment Effect Estimation
Yi-Fan Zhang
Hanlin Zhang
Zachary Chase Lipton
Li Erran Li
Eric P. Xing
OODD
24
29
0
02 Feb 2022
Matching Learned Causal Effects of Neural Networks with Domain Priors
Sai Srinivas Kancheti
Abbavaram Gowtham Reddy
V. Balasubramanian
Amit Sharma
CML
36
12
0
24 Nov 2021
NCoRE: Neural Counterfactual Representation Learning for Combinations of Treatments
S. Parbhoo
Stefan Bauer
Patrick Schwab
CML
BDL
19
16
0
20 Mar 2021
VCNet and Functional Targeted Regularization For Learning Causal Effects of Continuous Treatments
Lizhen Nie
Mao Ye
Qiang Liu
D. Nicolae
CML
25
68
0
14 Mar 2021
Estimating the Effects of Continuous-valued Interventions using Generative Adversarial Networks
Ioana Bica
James Jordon
M. Schaar
CML
30
105
0
27 Feb 2020
Learning Representations for Counterfactual Inference
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
232
719
0
12 May 2016
1