ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.00947
  4. Cited By
Stochastic first-order methods: non-asymptotic and computer-aided
  analyses via potential functions

Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions

3 February 2019
Adrien B. Taylor
Francis R. Bach
ArXivPDFHTML

Papers citing "Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions"

10 / 10 papers shown
Title
First Order Methods with Markovian Noise: from Acceleration to
  Variational Inequalities
First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities
Aleksandr Beznosikov
S. Samsonov
Marina Sheshukova
Alexander Gasnikov
A. Naumov
Eric Moulines
46
14
0
25 May 2023
Extragradient Method: $O(1/K)$ Last-Iterate Convergence for Monotone
  Variational Inequalities and Connections With Cocoercivity
Extragradient Method: O(1/K)O(1/K)O(1/K) Last-Iterate Convergence for Monotone Variational Inequalities and Connections With Cocoercivity
Eduard A. Gorbunov
Nicolas Loizou
Gauthier Gidel
31
64
0
08 Oct 2021
Almost sure convergence rates for Stochastic Gradient Descent and
  Stochastic Heavy Ball
Almost sure convergence rates for Stochastic Gradient Descent and Stochastic Heavy Ball
Othmane Sebbouh
Robert Mansel Gower
Aaron Defazio
6
22
0
14 Jun 2020
Complexity Guarantees for Polyak Steps with Momentum
Complexity Guarantees for Polyak Steps with Momentum
Mathieu Barré
Adrien B. Taylor
Alexandre d’Aspremont
22
26
0
03 Feb 2020
From Nesterov's Estimate Sequence to Riemannian Acceleration
From Nesterov's Estimate Sequence to Riemannian Acceleration
Kwangjun Ahn
S. Sra
22
74
0
24 Jan 2020
A frequency-domain analysis of inexact gradient methods
A frequency-domain analysis of inexact gradient methods
Oran Gannot
24
25
0
31 Dec 2019
ODE Analysis of Stochastic Gradient Methods with Optimism and Anchoring
  for Minimax Problems
ODE Analysis of Stochastic Gradient Methods with Optimism and Anchoring for Minimax Problems
Ernest K. Ryu
Kun Yuan
W. Yin
20
36
0
26 May 2019
New Convergence Aspects of Stochastic Gradient Algorithms
New Convergence Aspects of Stochastic Gradient Algorithms
Lam M. Nguyen
Phuong Ha Nguyen
Peter Richtárik
K. Scheinberg
Martin Takáč
Marten van Dijk
23
66
0
10 Nov 2018
Analysis of Biased Stochastic Gradient Descent Using Sequential
  Semidefinite Programs
Analysis of Biased Stochastic Gradient Descent Using Sequential Semidefinite Programs
Bin Hu
Peter M. Seiler
Laurent Lessard
18
39
0
03 Nov 2017
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
139
1,201
0
16 Aug 2016
1