Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.00800
Cited By
v1
v2 (latest)
Complexity, Statistical Risk, and Metric Entropy of Deep Nets Using Total Path Variation
2 February 2019
Andrew R. Barron
Jason M. Klusowski
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Complexity, Statistical Risk, and Metric Entropy of Deep Nets Using Total Path Variation"
10 / 10 papers shown
Title
How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning
Arthur Jacot
Seok Hoan Choi
Yuxiao Wen
AI4CE
143
2
0
08 Jul 2024
Approximation bounds for norm constrained neural networks with applications to regression and GANs
Yuling Jiao
Yang Wang
Yunfei Yang
85
20
0
24 Jan 2022
Neural Network Layer Algebra: A Framework to Measure Capacity and Compression in Deep Learning
Alberto Badías
A. Banerjee
74
3
0
02 Jul 2021
What Kinds of Functions do Deep Neural Networks Learn? Insights from Variational Spline Theory
Rahul Parhi
Robert D. Nowak
MLT
128
71
0
07 May 2021
Generalization bounds for deep learning
Guillermo Valle Pérez
A. Louis
BDL
82
45
0
07 Dec 2020
Layer Sparsity in Neural Networks
Mohamed Hebiri
Johannes Lederer
92
10
0
28 Jun 2020
Banach Space Representer Theorems for Neural Networks and Ridge Splines
Rahul Parhi
Robert D. Nowak
33
7
0
10 Jun 2020
Statistical Guarantees for Regularized Neural Networks
Mahsa Taheri
Fang Xie
Johannes Lederer
113
39
0
30 May 2020
Ensembled sparse-input hierarchical networks for high-dimensional datasets
Jean Feng
N. Simon
26
4
0
11 May 2020
Significance Tests for Neural Networks
Enguerrand Horel
K. Giesecke
57
56
0
16 Feb 2019
1