ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.00631
  4. Cited By
Is CQT more suitable for monaural speech separation than STFT? an
  empirical study

Is CQT more suitable for monaural speech separation than STFT? an empirical study

2 February 2019
Ziqiang Shi
Huibin Lin
Liu Liu
Rujie Liu
Jiqing Han
ArXiv (abs)PDFHTML

Papers citing "Is CQT more suitable for monaural speech separation than STFT? an empirical study"

5 / 5 papers shown
Title
TasNet: time-domain audio separation network for real-time,
  single-channel speech separation
TasNet: time-domain audio separation network for real-time, single-channel speech separation
Yi Luo
N. Mesgarani
73
629
0
01 Nov 2017
Multi-talker Speech Separation with Utterance-level Permutation
  Invariant Training of Deep Recurrent Neural Networks
Multi-talker Speech Separation with Utterance-level Permutation Invariant Training of Deep Recurrent Neural Networks
Morten Kolbaek
Dong Yu
Zheng-Hua Tan
Jesper Jensen
57
725
0
18 Mar 2017
Single-Channel Multi-Speaker Separation using Deep Clustering
Single-Channel Multi-Speaker Separation using Deep Clustering
Y. Isik
Jonathan Le Roux
Zhuo Chen
Shinji Watanabe
J. Hershey
65
430
0
07 Jul 2016
Permutation Invariant Training of Deep Models for Speaker-Independent
  Multi-talker Speech Separation
Permutation Invariant Training of Deep Models for Speaker-Independent Multi-talker Speech Separation
Dong Yu
Morten Kolbæk
Zheng-Hua Tan
Jesper Jensen
98
858
0
01 Jul 2016
Deep clustering: Discriminative embeddings for segmentation and
  separation
Deep clustering: Discriminative embeddings for segmentation and separation
J. Hershey
Zhuo Chen
Jonathan Le Roux
Shinji Watanabe
62
1,317
0
18 Aug 2015
1