Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.00137
Cited By
Tsallis Reinforcement Learning: A Unified Framework for Maximum Entropy Reinforcement Learning
31 January 2019
Kyungjae Lee
Sungyub Kim
Sungbin Lim
Sungjoon Choi
Songhwai Oh
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Tsallis Reinforcement Learning: A Unified Framework for Maximum Entropy Reinforcement Learning"
8 / 8 papers shown
Title
Divergence-Augmented Policy Optimization
Qing Wang
Yingru Li
Jiechao Xiong
Tong Zhang
OffRL
49
16
0
28 Jan 2025
Decoupling regularization from the action space
Sobhan Mohammadpour
Emma Frejinger
Pierre-Luc Bacon
37
0
0
10 Jun 2024
Offline RL with No OOD Actions: In-Sample Learning via Implicit Value Regularization
Haoran Xu
Li Jiang
Jianxiong Li
Zhuoran Yang
Zhaoran Wang
Victor Chan
Xianyuan Zhan
OffRL
41
73
0
28 Mar 2023
Tsallis and Rényi deformations linked via a new
λ
λ
λ
-duality
Ting-Kam Leonard Wong
Jun Zhang
22
0
0
26 Jul 2021
Policy Mirror Descent for Regularized Reinforcement Learning: A Generalized Framework with Linear Convergence
Wenhao Zhan
Shicong Cen
Baihe Huang
Yuxin Chen
Jason D. Lee
Yuejie Chi
29
76
0
24 May 2021
Variational Inference MPC using Tsallis Divergence
Ziyi Wang
Oswin So
Jason Gibson
Bogdan I. Vlahov
Manan S. Gandhi
Guan-Horng Liu
Evangelos A. Theodorou
25
33
0
01 Apr 2021
Maximum Entropy RL (Provably) Solves Some Robust RL Problems
Benjamin Eysenbach
Sergey Levine
OOD
50
176
0
10 Mar 2021
Mirror Descent Policy Optimization
Manan Tomar
Lior Shani
Yonathan Efroni
Mohammad Ghavamzadeh
25
83
0
20 May 2020
1