ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.10995
  4. Cited By
Go-Explore: a New Approach for Hard-Exploration Problems

Go-Explore: a New Approach for Hard-Exploration Problems

30 January 2019
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
    AI4TS
ArXivPDFHTML

Papers citing "Go-Explore: a New Approach for Hard-Exploration Problems"

20 / 70 papers shown
Title
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement
  Learning
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
Haoran Tang
Rein Houthooft
Davis Foote
Adam Stooke
Xi Chen
Yan Duan
John Schulman
F. Turck
Pieter Abbeel
OffRL
89
771
0
15 Nov 2016
Combating Reinforcement Learning's Sisyphean Curse with Intrinsic Fear
Combating Reinforcement Learning's Sisyphean Curse with Intrinsic Fear
Zachary Chase Lipton
Kamyar Azizzadenesheli
Jianfeng Gao
Lihong Li
Jianshu Chen
Li Deng
77
34
0
03 Nov 2016
Concrete Problems in AI Safety
Concrete Problems in AI Safety
Dario Amodei
C. Olah
Jacob Steinhardt
Paul Christiano
John Schulman
Dandelion Mané
212
2,383
0
21 Jun 2016
Generative Adversarial Imitation Learning
Generative Adversarial Imitation Learning
Jonathan Ho
Stefano Ermon
GAN
131
3,105
0
10 Jun 2016
Unifying Count-Based Exploration and Intrinsic Motivation
Unifying Count-Based Exploration and Intrinsic Motivation
Marc G. Bellemare
S. Srinivasan
Georg Ostrovski
Tom Schaul
D. Saxton
Rémi Munos
167
1,477
0
06 Jun 2016
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRL
ODL
214
5,075
0
05 Jun 2016
Learning values across many orders of magnitude
Learning values across many orders of magnitude
H. V. Hasselt
A. Guez
Matteo Hessel
Volodymyr Mnih
David Silver
52
170
0
24 Feb 2016
Deep Exploration via Bootstrapped DQN
Deep Exploration via Bootstrapped DQN
Ian Osband
Charles Blundell
Alexander Pritzel
Benjamin Van Roy
121
1,307
0
15 Feb 2016
Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning
Volodymyr Mnih
Adria Puigdomenech Badia
M. Berk Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
191
8,850
0
04 Feb 2016
Dueling Network Architectures for Deep Reinforcement Learning
Dueling Network Architectures for Deep Reinforcement Learning
Ziyun Wang
Tom Schaul
Matteo Hessel
H. V. Hasselt
Marc Lanctot
Nando de Freitas
OffRL
91
3,755
0
20 Nov 2015
Prioritized Experience Replay
Prioritized Experience Replay
Tom Schaul
John Quan
Ioannis Antonoglou
David Silver
OffRL
214
3,787
0
18 Nov 2015
Deep Reinforcement Learning with Double Q-learning
Deep Reinforcement Learning with Double Q-learning
H. V. Hasselt
A. Guez
David Silver
OffRL
161
7,635
0
22 Sep 2015
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
318
13,234
0
09 Sep 2015
Massively Parallel Methods for Deep Reinforcement Learning
Massively Parallel Methods for Deep Reinforcement Learning
Arun Nair
Praveen Srinivasan
Sam Blackwell
Cagdas Alcicek
Rory Fearon
...
Stig Petersen
Shane Legg
Volodymyr Mnih
Koray Kavukcuoglu
David Silver
OffRL
AI4CE
GNN
89
503
0
15 Jul 2015
Incentivizing Exploration In Reinforcement Learning With Deep Predictive
  Models
Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models
Bradly C. Stadie
Sergey Levine
Pieter Abbeel
89
505
0
03 Jul 2015
Illuminating search spaces by mapping elites
Illuminating search spaces by mapping elites
Jean-Baptiste Mouret
Jeff Clune
74
734
0
20 Apr 2015
End-to-End Training of Deep Visuomotor Policies
End-to-End Training of Deep Visuomotor Policies
Sergey Levine
Chelsea Finn
Trevor Darrell
Pieter Abbeel
BDL
308
3,434
0
02 Apr 2015
Robots that can adapt like animals
Robots that can adapt like animals
Antoine Cully
Jeff Clune
Danesh Tarapore
Jean-Baptiste Mouret
85
1,036
0
13 Jul 2014
The Arcade Learning Environment: An Evaluation Platform for General
  Agents
The Arcade Learning Environment: An Evaluation Platform for General Agents
Marc G. Bellemare
Yavar Naddaf
J. Veness
Michael Bowling
109
3,004
0
19 Jul 2012
Roulette-wheel selection via stochastic acceptance
Roulette-wheel selection via stochastic acceptance
A. Lipowski
Dorota Lipowska
102
706
0
16 Sep 2011
Previous
12