ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.10964
  4. Cited By
Transfer in Deep Reinforcement Learning Using Successor Features and
  Generalised Policy Improvement

Transfer in Deep Reinforcement Learning Using Successor Features and Generalised Policy Improvement

30 January 2019
André Barreto
Diana Borsa
John Quan
Tom Schaul
David Silver
Matteo Hessel
D. Mankowitz
Augustin Žídek
Rémi Munos
    OffRL
ArXivPDFHTML

Papers citing "Transfer in Deep Reinforcement Learning Using Successor Features and Generalised Policy Improvement"

35 / 35 papers shown
Title
Constructing an Optimal Behavior Basis for the Option Keyboard
Constructing an Optimal Behavior Basis for the Option Keyboard
L. N. Alegre
A. Bazzan
André Barreto
Bruno C. da Silva
26
0
0
01 May 2025
Skill Expansion and Composition in Parameter Space
Skill Expansion and Composition in Parameter Space
Tenglong Liu
J. Li
Yinan Zheng
Haoyi Niu
Yixing Lan
Xin Xu
Xianyuan Zhan
58
4
0
09 Feb 2025
Non-Adversarial Inverse Reinforcement Learning via Successor Feature Matching
Non-Adversarial Inverse Reinforcement Learning via Successor Feature Matching
A. Jain
Harley Wiltzer
Jesse Farebrother
Irina Rish
Glen Berseth
Sanjiban Choudhury
57
1
0
11 Nov 2024
Uncertainty-aware transfer across tasks using hybrid model-based
  successor feature reinforcement learning
Uncertainty-aware transfer across tasks using hybrid model-based successor feature reinforcement learning
Parvin Malekzadeh
Ming Hou
Konstantinos N. Plataniotis
51
1
0
16 Oct 2023
IOB: Integrating Optimization Transfer and Behavior Transfer for
  Multi-Policy Reuse
IOB: Integrating Optimization Transfer and Behavior Transfer for Multi-Policy Reuse
Siyuan Li
Haoyang Li
Jin Zhang
Zhen Wang
Peng Liu
Chongjie Zhang
OffRL
24
1
0
14 Aug 2023
Robotic Manipulation Datasets for Offline Compositional Reinforcement
  Learning
Robotic Manipulation Datasets for Offline Compositional Reinforcement Learning
Marcel Hussing
Jorge Armando Mendez Mendez
Anisha Singrodia
Cassandra Kent
Eric Eaton
OffRL
31
5
0
13 Jul 2023
On the Value of Myopic Behavior in Policy Reuse
On the Value of Myopic Behavior in Policy Reuse
Kang Xu
Chenjia Bai
Shuang Qiu
Haoran He
Bin Zhao
Zhen Wang
Wei Li
Xuelong Li
36
1
0
28 May 2023
Unsupervised Discovery of Continuous Skills on a Sphere
Unsupervised Discovery of Continuous Skills on a Sphere
Takahisa Imagawa
Takuya Hiraoka
Yoshimasa Tsuruoka
35
0
0
21 May 2023
Exploring the Noise Resilience of Successor Features and Predecessor
  Features Algorithms in One and Two-Dimensional Environments
Exploring the Noise Resilience of Successor Features and Predecessor Features Algorithms in One and Two-Dimensional Environments
Hyunsung Lee
24
1
0
14 Apr 2023
Reward-Predictive Clustering
Reward-Predictive Clustering
Lucas Lehnert
M. Frank
Michael L. Littman
OffRL
25
0
0
07 Nov 2022
CUP: Critic-Guided Policy Reuse
CUP: Critic-Guided Policy Reuse
Jin Zhang
Siyuan Li
Chongjie Zhang
29
8
0
15 Oct 2022
A Game-Theoretic Perspective of Generalization in Reinforcement Learning
A Game-Theoretic Perspective of Generalization in Reinforcement Learning
Chang Yang
Ruiyu Wang
Xinrun Wang
Zhen Wang
OffRL
27
3
0
07 Aug 2022
How to Reuse and Compose Knowledge for a Lifetime of Tasks: A Survey on
  Continual Learning and Functional Composition
How to Reuse and Compose Knowledge for a Lifetime of Tasks: A Survey on Continual Learning and Functional Composition
Jorge Armando Mendez Mendez
Eric Eaton
KELM
CLL
32
27
0
15 Jul 2022
Multi-Agent Policy Transfer via Task Relationship Modeling
Multi-Agent Policy Transfer via Task Relationship Modeling
Rongjun Qin
F. Chen
Tonghan Wang
Lei Yuan
Xiaoran Wu
Zongzhang Zhang
Chongjie Zhang
Yang Yu
38
19
0
09 Mar 2022
Successor Feature Neural Episodic Control
Successor Feature Neural Episodic Control
David Emukpere
Xavier Alameda-Pineda
Chris Reinke
BDL
30
4
0
04 Nov 2021
Successor Feature Representations
Successor Feature Representations
Chris Reinke
Xavier Alameda-Pineda
29
5
0
29 Oct 2021
A First-Occupancy Representation for Reinforcement Learning
A First-Occupancy Representation for Reinforcement Learning
Theodore H. Moskovitz
S. Wilson
M. Sahani
34
15
0
28 Sep 2021
APS: Active Pretraining with Successor Features
APS: Active Pretraining with Successor Features
Hao Liu
Pieter Abbeel
47
119
0
31 Aug 2021
Offline Meta-Reinforcement Learning with Online Self-Supervision
Offline Meta-Reinforcement Learning with Online Self-Supervision
Vitchyr H. Pong
Ashvin Nair
Laura M. Smith
Catherine Huang
Sergey Levine
OffRL
32
66
0
08 Jul 2021
The Option Keyboard: Combining Skills in Reinforcement Learning
The Option Keyboard: Combining Skills in Reinforcement Learning
André Barreto
Diana Borsa
Shaobo Hou
Gheorghe Comanici
Eser Aygun
...
Daniel Toyama
Jonathan J. Hunt
Shibl Mourad
David Silver
Doina Precup
29
98
0
24 Jun 2021
Foresee then Evaluate: Decomposing Value Estimation with Latent Future
  Prediction
Foresee then Evaluate: Decomposing Value Estimation with Latent Future Prediction
Hongyao Tang
Jianye Hao
Guangyong Chen
Pengfei Chen
Cheng Chen
Yaodong Yang
Lu Zhang
Wulong Liu
Zhaopeng Meng
OffRL
35
4
0
03 Mar 2021
Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning
Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning
Victor Campos
Pablo Sprechmann
Steven Hansen
André Barreto
Steven Kapturowski
Alex Vitvitskyi
Adria Puigdomenech Badia
Charles Blundell
OffRL
OnRL
38
25
0
24 Feb 2021
Generative Temporal Difference Learning for Infinite-Horizon Prediction
Generative Temporal Difference Learning for Infinite-Horizon Prediction
Michael Janner
Igor Mordatch
Sergey Levine
AI4CE
18
34
0
27 Oct 2020
Behavior Priors for Efficient Reinforcement Learning
Behavior Priors for Efficient Reinforcement Learning
Dhruva Tirumala
Alexandre Galashov
Hyeonwoo Noh
Leonard Hasenclever
Razvan Pascanu
...
Guillaume Desjardins
Wojciech M. Czarnecki
Arun Ahuja
Yee Whye Teh
N. Heess
37
39
0
27 Oct 2020
State2vec: Off-Policy Successor Features Approximators
State2vec: Off-Policy Successor Features Approximators
Sephora Madjiheurem
Laura Toni
OOD
OffRL
11
5
0
22 Oct 2019
Attentive Multi-Task Deep Reinforcement Learning
Attentive Multi-Task Deep Reinforcement Learning
Timo Bram
Gino Brunner
Oliver Richter
Roger Wattenhofer
CLL
17
18
0
05 Jul 2019
A neurally plausible model learns successor representations in partially
  observable environments
A neurally plausible model learns successor representations in partially observable environments
Eszter Vértes
M. Sahani
13
42
0
22 Jun 2019
Better transfer learning with inferred successor maps
Better transfer learning with inferred successor maps
T. Madarász
11
21
0
18 Jun 2019
Fast Task Inference with Variational Intrinsic Successor Features
Fast Task Inference with Variational Intrinsic Successor Features
Steven Hansen
Will Dabney
André Barreto
T. Wiele
David Warde-Farley
Volodymyr Mnih
BDL
44
151
0
12 Jun 2019
Planning in Hierarchical Reinforcement Learning: Guarantees for Using
  Local Policies
Planning in Hierarchical Reinforcement Learning: Guarantees for Using Local Policies
Tom Zahavy
Avinatan Hassidim
Haim Kaplan
Yishay Mansour
OffRL
22
7
0
26 Feb 2019
Successor Features Combine Elements of Model-Free and Model-based
  Reinforcement Learning
Successor Features Combine Elements of Model-Free and Model-based Reinforcement Learning
Lucas Lehnert
Michael L. Littman
10
10
0
31 Jan 2019
RUDDER: Return Decomposition for Delayed Rewards
RUDDER: Return Decomposition for Delayed Rewards
Jose A. Arjona-Medina
Michael Gillhofer
Michael Widrich
Thomas Unterthiner
Johannes Brandstetter
Sepp Hochreiter
30
212
0
20 Jun 2018
Accelerating Learning in Constructive Predictive Frameworks with the
  Successor Representation
Accelerating Learning in Constructive Predictive Frameworks with the Successor Representation
Craig Sherstan
Marlos C. Machado
P. Pilarski
27
10
0
23 Mar 2018
Emergence of Locomotion Behaviours in Rich Environments
Emergence of Locomotion Behaviours in Rich Environments
N. Heess
TB Dhruva
S. Sriram
Jay Lemmon
J. Merel
...
Tom Erez
Ziyun Wang
S. M. Ali Eslami
Martin Riedmiller
David Silver
143
928
0
07 Jul 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
377
11,700
0
09 Mar 2017
1