ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.10593
  4. Cited By
Decentralized Online Learning: Take Benefits from Others' Data without
  Sharing Your Own to Track Global Trend
v1v2v3v4 (latest)

Decentralized Online Learning: Take Benefits from Others' Data without Sharing Your Own to Track Global Trend

29 January 2019
Wendi Wu
Zongren Li
Yawei Zhao
Chenkai Yu
P. Zhao
Ji Liu
    FedML
ArXiv (abs)PDFHTML

Papers citing "Decentralized Online Learning: Take Benefits from Others' Data without Sharing Your Own to Track Global Trend"

22 / 22 papers shown
Title
Decentralized Learning in Online Queuing Systems
Decentralized Learning in Online Queuing Systems
Flore Sentenac
Etienne Boursier
Vianney Perchet
42
16
0
08 Jun 2021
OD-SGD: One-step Delay Stochastic Gradient Descent for Distributed
  Training
OD-SGD: One-step Delay Stochastic Gradient Descent for Distributed Training
Yemao Xu
Dezun Dong
Weixia Xu
Xiangke Liao
29
7
0
14 May 2020
Understand Dynamic Regret with Switching Cost for Online Decision Making
Understand Dynamic Regret with Switching Cost for Online Decision Making
Yawei Zhao
Qian Zhao
Xingxing Zhang
En Zhu
Xinwang Liu
Jianping Yin
50
12
0
28 Nov 2019
Introduction to Online Convex Optimization
Introduction to Online Convex Optimization
Elad Hazan
OffRL
175
1,932
0
07 Sep 2019
Stochastic Gradient Push for Distributed Deep Learning
Stochastic Gradient Push for Distributed Deep Learning
Mahmoud Assran
Nicolas Loizou
Nicolas Ballas
Michael G. Rabbat
79
348
0
27 Nov 2018
Adaptive Online Learning in Dynamic Environments
Adaptive Online Learning in Dynamic Environments
Lijun Zhang
Shiyin Lu
Zhi Zhou
67
185
0
25 Oct 2018
Proximal Online Gradient is Optimum for Dynamic Regret
Proximal Online Gradient is Optimum for Dynamic Regret
Yawei Zhao
Shuang Qiu
Ji Liu
26
7
0
08 Oct 2018
Communication Compression for Decentralized Training
Communication Compression for Decentralized Training
Hanlin Tang
Shaoduo Gan
Ce Zhang
Tong Zhang
Ji Liu
63
273
0
17 Mar 2018
Online Machine Learning in Big Data Streams
Online Machine Learning in Big Data Streams
András A. Benczúr
Levente Kocsis
Róbert Pálovics
38
43
0
16 Feb 2018
Tracking the Best Expert in Non-stationary Stochastic Environments
Tracking the Best Expert in Non-stationary Stochastic Environments
Chen-Yu Wei
Yi-Te Hong
Chi-Jen Lu
46
59
0
02 Dec 2017
Decentralized Online Learning with Kernels
Decentralized Online Learning with Kernels
Alec Koppel
Santiago Paternain
C. Richard
Alejandro Ribeiro
73
51
0
11 Oct 2017
Efficient tracking of a growing number of experts
Efficient tracking of a growing number of experts
Jaouad Mourtada
Odalric-Ambrym Maillard
52
22
0
31 Aug 2017
Improved Strongly Adaptive Online Learning using Coin Betting
Improved Strongly Adaptive Online Learning using Coin Betting
Kwang-Sung Jun
Francesco Orabona
Rebecca Willett
S. Wright
173
82
0
14 Oct 2016
Distributed Online Optimization in Dynamic Environments Using Mirror
  Descent
Distributed Online Optimization in Dynamic Environments Using Mirror Descent
Shahin Shahrampour
Ali Jadbabaie
228
281
0
09 Sep 2016
On Nonconvex Decentralized Gradient Descent
On Nonconvex Decentralized Gradient Descent
Jinshan Zeng
W. Yin
75
191
0
20 Aug 2016
Improved Dynamic Regret for Non-degenerate Functions
Improved Dynamic Regret for Non-degenerate Functions
Lijun Zhang
Tianbao Yang
Jinfeng Yi
Jing Rong
Zhi Zhou
235
127
0
13 Aug 2016
Tracking Slowly Moving Clairvoyant: Optimal Dynamic Regret of Online
  Learning with True and Noisy Gradient
Tracking Slowly Moving Clairvoyant: Optimal Dynamic Regret of Online Learning with True and Noisy Gradient
Tianbao Yang
Lijun Zhang
Rong Jin
Jinfeng Yi
57
156
0
16 May 2016
Coordinate Dual Averaging for Decentralized Online Optimization with
  Nonseparable Global Objectives
Coordinate Dual Averaging for Decentralized Online Optimization with Nonseparable Global Objectives
Soomin Lee
A. Nedić
Maxim Raginsky
35
34
0
31 Aug 2015
Dynamical Models and Tracking Regret in Online Convex Programming
Dynamical Models and Tracking Regret in Online Convex Programming
Eric C. Hall
Rebecca Willett
101
116
0
07 Jan 2013
Mirror Descent Meets Fixed Share (and feels no regret)
Mirror Descent Meets Fixed Share (and feels no regret)
Nicolò Cesa-Bianchi
Pierre Gaillard
Gabor Lugosi
Gilles Stoltz
202
99
0
15 Feb 2012
Efficient Tracking of Large Classes of Experts
Efficient Tracking of Large Classes of Experts
András Gyorgy
Tamás Linder
Gábor Lugosi
115
75
0
12 Oct 2011
Distributed Autonomous Online Learning: Regrets and Intrinsic
  Privacy-Preserving Properties
Distributed Autonomous Online Learning: Regrets and Intrinsic Privacy-Preserving Properties
Feng Yan
S. Sundaram
S. V. N. Vishwanathan
Y. Qi
91
269
0
21 Jun 2010
1