Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.09981
Cited By
Improving Adversarial Robustness of Ensembles with Diversity Training
28 January 2019
Sanjay Kariyappa
Moinuddin K. Qureshi
AAML
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Improving Adversarial Robustness of Ensembles with Diversity Training"
28 / 28 papers shown
Title
A Comprehensive Survey of Mixture-of-Experts: Algorithms, Theory, and Applications
Siyuan Mu
Sen Lin
MoE
467
5
0
10 Mar 2025
Understanding Model Ensemble in Transferable Adversarial Attack
Wei Yao
Zeliang Zhang
Huayi Tang
Yong Liu
96
3
0
09 Oct 2024
Adapting Auxiliary Losses Using Gradient Similarity
Yunshu Du
Wojciech M. Czarnecki
Siddhant M. Jayakumar
Mehrdad Farajtabar
Razvan Pascanu
Balaji Lakshminarayanan
81
158
0
05 Dec 2018
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models
Pouya Samangouei
Maya Kabkab
Rama Chellappa
AAML
GAN
86
1,179
0
17 May 2018
Stochastic Activation Pruning for Robust Adversarial Defense
Guneet Singh Dhillon
Kamyar Azizzadenesheli
Zachary Chase Lipton
Jeremy Bernstein
Jean Kossaifi
Aran Khanna
Anima Anandkumar
AAML
81
547
0
05 Mar 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
243
3,194
0
01 Feb 2018
Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality
Xingjun Ma
Yue Liu
Yisen Wang
S. Erfani
S. Wijewickrema
Grant Schoenebeck
Basel Alomair
Michael E. Houle
James Bailey
AAML
111
742
0
08 Jan 2018
Training Ensembles to Detect Adversarial Examples
Alexander Bagnall
Razvan Bunescu
Gordon Stewart
AAML
48
39
0
11 Dec 2017
Towards Robust Neural Networks via Random Self-ensemble
Xuanqing Liu
Minhao Cheng
Huan Zhang
Cho-Jui Hsieh
FedML
AAML
97
422
0
02 Dec 2017
Mitigating Adversarial Effects Through Randomization
Cihang Xie
Jianyu Wang
Zhishuai Zhang
Zhou Ren
Alan Yuille
AAML
115
1,061
0
06 Nov 2017
Countering Adversarial Images using Input Transformations
Chuan Guo
Mayank Rana
Moustapha Cissé
Laurens van der Maaten
AAML
125
1,406
0
31 Oct 2017
PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples
Yang Song
Taesup Kim
Sebastian Nowozin
Stefano Ermon
Nate Kushman
AAML
112
790
0
30 Oct 2017
Boosting Adversarial Attacks with Momentum
Yinpeng Dong
Fangzhou Liao
Tianyu Pang
Hang Su
Jun Zhu
Xiaolin Hu
Jianguo Li
AAML
91
85
0
17 Oct 2017
Ensemble Methods as a Defense to Adversarial Perturbations Against Deep Neural Networks
Thilo Strauss
Markus Hanselmann
Andrej Junginger
Holger Ulmer
AAML
69
136
0
11 Sep 2017
Cascade Adversarial Machine Learning Regularized with a Unified Embedding
Taesik Na
J. Ko
Saibal Mukhopadhyay
AAML
GAN
70
102
0
08 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
315
12,131
0
19 Jun 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
177
2,729
0
19 May 2017
The Space of Transferable Adversarial Examples
Florian Tramèr
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
SILM
90
558
0
11 Apr 2017
Delving into Transferable Adversarial Examples and Black-box Attacks
Yanpei Liu
Xinyun Chen
Chang-rui Liu
Basel Alomair
AAML
143
1,741
0
08 Nov 2016
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
472
3,148
0
04 Nov 2016
Technical Report on the CleverHans v2.1.0 Adversarial Examples Library
Nicolas Papernot
Fartash Faghri
Nicholas Carlini
Ian Goodfellow
Reuben Feinman
...
David Berthelot
P. Hendricks
Jonas Rauber
Rujun Long
Patrick McDaniel
AAML
80
514
0
03 Oct 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
268
8,583
0
16 Aug 2016
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
SILM
AAML
116
1,741
0
24 May 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,426
0
10 Dec 2015
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
113
3,076
0
14 Nov 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
282
19,121
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
282
14,963
1
21 Dec 2013
1