Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.09960
Cited By
Using Pre-Training Can Improve Model Robustness and Uncertainty
28 January 2019
Dan Hendrycks
Kimin Lee
Mantas Mazeika
NoLa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Using Pre-Training Can Improve Model Robustness and Uncertainty"
50 / 146 papers shown
Title
Robust Asymmetric Heterogeneous Federated Learning with Corrupted Clients
Xiuwen Fang
Mang Ye
Bo Du
FedML
74
1
0
12 Mar 2025
Pre-training Graph Neural Networks with Structural Fingerprints for Materials Discovery
Shuyi Jia
Shitij Govil
Manav Ramprasad
Victor Fung
AI4CE
64
1
0
03 Mar 2025
A Large-Scale Study of Model Integration in ML-Enabled Software Systems
Yorick Sens
Henriette Knopp
Sven Peldszus
Thorsten Berger
AIFin
31
2
0
12 Aug 2024
Detecting Brittle Decisions for Free: Leveraging Margin Consistency in Deep Robust Classifiers
Jonas Ngnawé
Sabyasachi Sahoo
Y. Pequignot
Frédéric Precioso
Christian Gagné
AAML
42
0
0
26 Jun 2024
Are Classification Robustness and Explanation Robustness Really Strongly Correlated? An Analysis Through Input Loss Landscape
Tiejin Chen
Wenwang Huang
Linsey Pang
Dongsheng Luo
Hua Wei
OOD
49
0
0
09 Mar 2024
FedLED: Label-Free Equipment Fault Diagnosis with Vertical Federated Transfer Learning
Jie Shen
Shusen Yang
Cong Zhao
Xuebin Ren
Peng Zhao
Yuqian Yang
Qing Han
Shuaijun Wu
FedML
22
9
0
29 Dec 2023
MIMIR: Masked Image Modeling for Mutual Information-based Adversarial Robustness
Xiaoyun Xu
Shujian Yu
Jingzheng Wu
S. Picek
AAML
35
0
0
08 Dec 2023
xTrimoGene: An Efficient and Scalable Representation Learner for Single-Cell RNA-Seq Data
Jing Gong
Minsheng Hao
Xingyi Cheng
Xin Zeng
Chiming Liu
Jianzhu Ma
Xuegong Zhang
Taifeng Wang
Leo T. Song
31
17
0
26 Nov 2023
Temperature-scaling surprisal estimates improve fit to human reading times -- but does it do so for the "right reasons"?
Tong Liu
Iza vSkrjanec
Vera Demberg
48
5
0
15 Nov 2023
Knowing What LLMs DO NOT Know: A Simple Yet Effective Self-Detection Method
Yukun Zhao
Lingyong Yan
Weiwei Sun
Guoliang Xing
Chong Meng
Shuaiqiang Wang
Zhicong Cheng
Zhaochun Ren
Dawei Yin
29
35
0
27 Oct 2023
Mind the instructions: a holistic evaluation of consistency and interactions in prompt-based learning
Lucas Weber
Elia Bruni
Dieuwke Hupkes
32
24
0
20 Oct 2023
SynthTab: Leveraging Synthesized Data for Guitar Tablature Transcription
Yongyi Zang
Yi Zhong
Frank Cwitkowitz
Zhiyao Duan
29
6
0
16 Sep 2023
Position: Key Claims in LLM Research Have a Long Tail of Footnotes
Anna Rogers
A. Luccioni
53
19
0
14 Aug 2023
COCO-O: A Benchmark for Object Detectors under Natural Distribution Shifts
Xiaofeng Mao
YueFeng Chen
Yao Zhu
Da Chen
Hang Su
Rong Zhang
H. Xue
ObjD
OOD
38
18
0
24 Jul 2023
Long-Tailed Continual Learning For Visual Food Recognition
Jiangpeng He
Luotao Lin
Jack Ma
H. Eicher-Miller
F. Zhu
Fengqing M Zhu
59
14
0
01 Jul 2023
Group-based Robustness: A General Framework for Customized Robustness in the Real World
Weiran Lin
Keane Lucas
Neo Eyal
Lujo Bauer
Michael K. Reiter
Mahmood Sharif
OOD
AAML
27
1
0
29 Jun 2023
Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection Capability
Jianing Zhu
Hengzhuang Li
Jiangchao Yao
Tongliang Liu
Jianliang Xu
Bo Han
OODD
43
12
0
06 Jun 2023
Selection for short-term empowerment accelerates the evolution of homeostatic neural cellular automata
Caitlin Grasso
Josh Bongard
31
0
0
24 May 2023
How Deep Learning Sees the World: A Survey on Adversarial Attacks & Defenses
Joana Cabral Costa
Tiago Roxo
Hugo Manuel Proença
Pedro R. M. Inácio
AAML
40
50
0
18 May 2023
On Efficient Training of Large-Scale Deep Learning Models: A Literature Review
Li Shen
Yan Sun
Zhiyuan Yu
Liang Ding
Xinmei Tian
Dacheng Tao
VLM
30
41
0
07 Apr 2023
PIAT: Parameter Interpolation based Adversarial Training for Image Classification
Kun He
Xin Liu
Yichen Yang
Zhou Qin
Weigao Wen
Hui Xue
J. Hopcroft
AAML
30
0
0
24 Mar 2023
Randomized Adversarial Training via Taylor Expansion
Gao Jin
Xinping Yi
Dengyu Wu
Ronghui Mu
Xiaowei Huang
AAML
44
34
0
19 Mar 2023
Overwriting Pretrained Bias with Finetuning Data
Angelina Wang
Olga Russakovsky
26
29
0
10 Mar 2023
Certified Robust Neural Networks: Generalization and Corruption Resistance
Amine Bennouna
Ryan Lucas
Bart P. G. Van Parys
38
10
0
03 Mar 2023
A Comprehensive Study on Robustness of Image Classification Models: Benchmarking and Rethinking
Chang-Shu Liu
Yinpeng Dong
Wenzhao Xiang
X. Yang
Hang Su
Junyi Zhu
YueFeng Chen
Yuan He
H. Xue
Shibao Zheng
OOD
VLM
AAML
33
72
0
28 Feb 2023
Differentially Private Diffusion Models Generate Useful Synthetic Images
Sahra Ghalebikesabi
Leonard Berrada
Sven Gowal
Ira Ktena
Robert Stanforth
Jamie Hayes
Soham De
Samuel L. Smith
Olivia Wiles
Borja Balle
DiffM
31
69
0
27 Feb 2023
Better Diffusion Models Further Improve Adversarial Training
Zekai Wang
Tianyu Pang
Chao Du
Min-Bin Lin
Weiwei Liu
Shuicheng Yan
DiffM
24
208
0
09 Feb 2023
Revisiting Pre-training in Audio-Visual Learning
Ruoxuan Feng
Wenke Xia
Di Hu
32
1
0
07 Feb 2023
Data Augmentation Alone Can Improve Adversarial Training
Lin Li
Michael W. Spratling
16
50
0
24 Jan 2023
A Stability Analysis of Fine-Tuning a Pre-Trained Model
Z. Fu
Anthony Man-Cho So
Nigel Collier
23
3
0
24 Jan 2023
Uncertainty Estimation based on Geometric Separation
Gabriella Chouraqui
L. Cohen
Gil Einziger
Liel Leman
30
0
0
11 Jan 2023
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Nikolaos Antoniou
Efthymios Georgiou
Alexandros Potamianos
AAML
29
5
0
15 Dec 2022
MixBoost: Improving the Robustness of Deep Neural Networks by Boosting Data Augmentation
Zhendong Liu
Wenyu Jiang
Min Guo
Chongjun Wang
AAML
21
1
0
08 Dec 2022
Calibration Meets Explanation: A Simple and Effective Approach for Model Confidence Estimates
Dongfang Li
Baotian Hu
Qingcai Chen
16
8
0
06 Nov 2022
Improving Adversarial Robustness with Self-Paced Hard-Class Pair Reweighting
Peng-Fei Hou
Jie Han
Xingyu Li
AAML
OOD
23
11
0
26 Oct 2022
Robust Models are less Over-Confident
Julia Grabinski
Paul Gavrikov
J. Keuper
M. Keuper
AAML
36
24
0
12 Oct 2022
Goal Misgeneralization: Why Correct Specifications Aren't Enough For Correct Goals
Rohin Shah
Vikrant Varma
Ramana Kumar
Mary Phuong
Victoria Krakovna
J. Uesato
Zachary Kenton
37
68
0
04 Oct 2022
Inducing Data Amplification Using Auxiliary Datasets in Adversarial Training
Saehyung Lee
Hyungyu Lee
AAML
29
2
0
27 Sep 2022
A Light Recipe to Train Robust Vision Transformers
Edoardo Debenedetti
Vikash Sehwag
Prateek Mittal
ViT
32
68
0
15 Sep 2022
Calibrated ensembles can mitigate accuracy tradeoffs under distribution shift
Ananya Kumar
Tengyu Ma
Percy Liang
Aditi Raghunathan
UQCV
OODD
OOD
42
38
0
18 Jul 2022
Queried Unlabeled Data Improves and Robustifies Class-Incremental Learning
Tianlong Chen
Sijia Liu
Shiyu Chang
Lisa Amini
Zhangyang Wang
CLL
26
4
0
15 Jun 2022
X-Risk Analysis for AI Research
Dan Hendrycks
Mantas Mazeika
33
67
0
13 Jun 2022
Revealing Single Frame Bias for Video-and-Language Learning
Jie Lei
Tamara L. Berg
Joey Tianyi Zhou
24
111
0
07 Jun 2022
Post-hoc Concept Bottleneck Models
Mert Yuksekgonul
Maggie Wang
James Zou
145
185
0
31 May 2022
Rethinking Bayesian Learning for Data Analysis: The Art of Prior and Inference in Sparsity-Aware Modeling
Lei Cheng
Feng Yin
Sergios Theodoridis
S. Chatzis
Tsung-Hui Chang
68
75
0
28 May 2022
CE-based white-box adversarial attacks will not work using super-fitting
Youhuan Yang
Lei Sun
Leyu Dai
Song Guo
Xiuqing Mao
Xiaoqin Wang
Bayi Xu
AAML
34
0
0
04 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
26
48
0
01 May 2022
Adversarial Robustness through the Lens of Convolutional Filters
Paul Gavrikov
J. Keuper
38
15
0
05 Apr 2022
CNN Filter DB: An Empirical Investigation of Trained Convolutional Filters
Paul Gavrikov
J. Keuper
AAML
24
31
0
29 Mar 2022
A Comparative Survey of Deep Active Learning
Xueying Zhan
Qingzhong Wang
Kuan-Hao Huang
Haoyi Xiong
Dejing Dou
Antoni B. Chan
FedML
HAI
24
105
0
25 Mar 2022
1
2
3
Next