Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.09917
Cited By
Testing Conditional Independence in Supervised Learning Algorithms
28 January 2019
David S. Watson
Marvin N. Wright
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Testing Conditional Independence in Supervised Learning Algorithms"
24 / 24 papers shown
Title
Knoop: Practical Enhancement of Knockoff with Over-Parameterization for Variable Selection
Xiaochen Zhang
Yunfeng Cai
Haoyi Xiong
74
0
0
28 Jan 2025
Normalizing Flows for Knockoff-free Controlled Feature Selection
Derek Hansen
Brian Manzo
Jeffrey Regier
OOD
54
5
0
03 Jun 2021
Reasoning About Generalization via Conditional Mutual Information
Thomas Steinke
Lydia Zakynthinou
108
162
0
24 Jan 2020
A Primer on PAC-Bayesian Learning
Benjamin Guedj
104
221
0
16 Jan 2019
Deep Knockoffs
Yaniv Romano
Matteo Sesia
Emmanuel J. Candès
BDL
56
139
0
16 Nov 2018
The conditional permutation test for independence while controlling for confounders
Thomas B. Berrett
Yi Wang
Rina Foygel Barber
R. Samworth
68
16
0
14 Jul 2018
The Hardness of Conditional Independence Testing and the Generalised Covariance Measure
Rajen Dinesh Shah
J. Peters
94
293
0
19 Apr 2018
Fast Conditional Independence Test for Vector Variables with Large Sample Sizes
Krzysztof Chalupka
Pietro Perona
F. Eberhardt
VLM
36
36
0
08 Apr 2018
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
91
2,332
0
01 Nov 2017
Gene Hunting with Knockoffs for Hidden Markov Models
Matteo Sesia
C. Sabatti
Emmanuel J. Candès
36
133
0
14 Jun 2017
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
228
5,774
0
14 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
744
21,613
0
22 May 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
150
3,848
0
10 Apr 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
151
5,920
0
04 Mar 2017
Approximate Kernel-based Conditional Independence Tests for Fast Non-Parametric Causal Discovery
Eric V. Strobl
Kun Zhang
Shyam Visweswaran
BDL
58
174
0
13 Feb 2017
Bootstrapping and Sample Splitting For High-Dimensional, Assumption-Free Inference
Alessandro Rinaldo
Larry A. Wasserman
M. G'Sell
Jing Lei
53
94
0
16 Nov 2016
PAC-Bayesian Theory Meets Bayesian Inference
Pascal Germain
Francis R. Bach
Alexandre Lacoste
Simon Lacoste-Julien
60
182
0
27 May 2016
Distribution-Free Predictive Inference For Regression
Jing Lei
M. G'Sell
Alessandro Rinaldo
Robert Tibshirani
Larry A. Wasserman
263
832
0
14 Apr 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
798
16,828
0
16 Feb 2016
ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R
Marvin N. Wright
A. Ziegler
228
2,760
0
18 Aug 2015
Controlling the false discovery rate via knockoffs
Rina Foygel Barber
Emmanuel J. Candès
181
746
0
22 Apr 2014
A Scalable Conditional Independence Test for Nonlinear, Non-Gaussian Data
Joseph Ramsey
47
51
0
20 Jan 2014
Kernel-based Conditional Independence Test and Application in Causal Discovery
Kun Zhang
J. Peters
Dominik Janzing
Bernhard Schölkopf
BDL
CML
82
618
0
14 Feb 2012
Learning Bayesian Networks with the bnlearn R Package
M. Scutari
BDL
153
1,723
0
26 Aug 2009
1