Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.09749
Cited By
Fairwashing: the risk of rationalization
28 January 2019
Ulrich Aïvodji
Hiromi Arai
O. Fortineau
Sébastien Gambs
Satoshi Hara
Alain Tapp
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fairwashing: the risk of rationalization"
17 / 17 papers shown
Title
Uncertainty-Aware Explanations Through Probabilistic Self-Explainable Neural Networks
Jon Vadillo
Roberto Santana
J. A. Lozano
Marta Z. Kwiatkowska
BDL
AAML
124
0
0
17 Feb 2025
ExpProof : Operationalizing Explanations for Confidential Models with ZKPs
Chhavi Yadav
Evan Monroe Laufer
Dan Boneh
Kamalika Chaudhuri
124
0
0
06 Feb 2025
Feature Responsiveness Scores: Model-Agnostic Explanations for Recourse
Seung Hyun Cheon
Anneke Wernerfelt
Sorelle A. Friedler
Berk Ustun
FaML
FAtt
169
1
0
29 Oct 2024
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
Satyapriya Krishna
Tessa Han
Alex Gu
Steven Wu
S. Jabbari
Himabindu Lakkaraju
241
193
0
03 Feb 2022
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead
Cynthia Rudin
ELM
FaML
50
219
0
26 Nov 2018
AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias
Rachel K. E. Bellamy
Kuntal Dey
Michael Hind
Samuel C. Hoffman
Stephanie Houde
...
Diptikalyan Saha
P. Sattigeri
Moninder Singh
Kush R. Varshney
Yunfeng Zhang
FaML
SyDa
96
806
0
03 Oct 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
122
940
0
20 Jun 2018
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
124
3,954
0
06 Feb 2018
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
278
2,262
0
24 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,815
0
22 May 2017
Fairness in Criminal Justice Risk Assessments: The State of the Art
R. Berk
Hoda Heidari
S. Jabbari
Michael Kearns
Aaron Roth
49
994
0
27 Mar 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
382
3,785
0
28 Feb 2017
Equality of Opportunity in Supervised Learning
Moritz Hardt
Eric Price
Nathan Srebro
FaML
215
4,305
0
07 Oct 2016
European Union regulations on algorithmic decision-making and a "right to explanation"
B. Goodman
Seth Flaxman
FaML
AILaw
63
1,899
0
28 Jun 2016
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
174
3,690
0
10 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,931
0
16 Feb 2016
Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model
Benjamin Letham
Cynthia Rudin
Tyler H. McCormick
D. Madigan
FAtt
60
743
0
05 Nov 2015
1