ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.09496
  4. Cited By
Characterizing the Shape of Activation Space in Deep Neural Networks

Characterizing the Shape of Activation Space in Deep Neural Networks

28 January 2019
Thomas Gebhart
Paul Schrater
Alan Hylton
    AAML
ArXivPDFHTML

Papers citing "Characterizing the Shape of Activation Space in Deep Neural Networks"

4 / 4 papers shown
Title
Revisiting Point Cloud Completion: Are We Ready For The Real-World?
Revisiting Point Cloud Completion: Are We Ready For The Real-World?
Stuti Pathak
Prashant Kumar
Nicholus Mboga
Gunther Steenackers
R. Penne
Rudi Penne
269
0
0
26 Nov 2024
GLiDR: Topologically Regularized Graph Generative Network for Sparse
  LiDAR Point Clouds
GLiDR: Topologically Regularized Graph Generative Network for Sparse LiDAR Point Clouds
Prashant Kumar
Kshitij Madhav Bhat
Vedang Bhupesh Shenvi Nadkarni
P. K. Kalra
38
2
0
29 Nov 2023
An Adversarial Robustness Perspective on the Topology of Neural Networks
An Adversarial Robustness Perspective on the Topology of Neural Networks
Morgane Goibert
Thomas Ricatte
Elvis Dohmatob
AAML
21
2
0
04 Nov 2022
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
251
1,842
0
03 Feb 2017
1