Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.09465
Cited By
Deconstructing Generative Adversarial Networks
27 January 2019
Banghua Zhu
Jiantao Jiao
David Tse
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deconstructing Generative Adversarial Networks"
9 / 9 papers shown
Title
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
T. Getu
Georges Kaddoum
M. Bennis
40
1
0
13 Sep 2023
Distribution estimation and change-point estimation for time series via DNN-based GANs
Jianya Lu
Ying Mo
Zhijie Xiao
Lihu Xu
Qiuran Yao
AI4TS
36
0
0
26 Nov 2022
Pursuit of a Discriminative Representation for Multiple Subspaces via Sequential Games
Druv Pai
Michael Psenka
Chih-Yuan Chiu
Manxi Wu
Yan Sun
Y. Ma
24
6
0
18 Jun 2022
Byzantine-Robust Federated Learning with Optimal Statistical Rates and Privacy Guarantees
Banghua Zhu
Lun Wang
Qi Pang
Shuai Wang
Jiantao Jiao
D. Song
Michael I. Jordan
FedML
98
30
0
24 May 2022
Optimal oracle inequalities for solving projected fixed-point equations
Wenlong Mou
A. Pananjady
Martin J. Wainwright
18
14
0
09 Dec 2020
Robust estimation via generalized quasi-gradients
Banghua Zhu
Jiantao Jiao
Jacob Steinhardt
23
43
0
28 May 2020
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
Jie Gui
Zhenan Sun
Yonggang Wen
Dacheng Tao
Jieping Ye
EGVM
26
818
0
20 Jan 2020
Conditional Image Synthesis With Auxiliary Classifier GANs
Augustus Odena
C. Olah
Jonathon Shlens
GAN
250
3,190
0
30 Oct 2016
Limit laws of the empirical Wasserstein distance: Gaussian distributions
Thomas Rippl
Axel Munk
A. Sturm
52
64
0
15 Jul 2015
1