Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.09392
Cited By
On the (In)fidelity and Sensitivity for Explanations
27 January 2019
Chih-Kuan Yeh
Cheng-Yu Hsieh
A. Suggala
David I. Inouye
Pradeep Ravikumar
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the (In)fidelity and Sensitivity for Explanations"
34 / 84 papers shown
Title
Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural Network Explanations and Beyond
Anna Hedström
Leander Weber
Dilyara Bareeva
Daniel G. Krakowczyk
Franz Motzkus
Wojciech Samek
Sebastian Lapuschkin
Marina M.-C. Höhne
XAI
ELM
21
168
0
14 Feb 2022
Time to Focus: A Comprehensive Benchmark Using Time Series Attribution Methods
Dominique Mercier
Jwalin Bhatt
Andreas Dengel
Sheraz Ahmed
AI4TS
22
11
0
08 Feb 2022
Towards a consistent interpretation of AIOps models
Yingzhe Lyu
Gopi Krishnan Rajbahadur
Dayi Lin
Boyuan Chen
Zhen Ming
Z. Jiang
AI4CE
22
19
0
04 Feb 2022
Topological Representations of Local Explanations
Peter Xenopoulos
G. Chan
Harish Doraiswamy
L. G. Nonato
Brian Barr
Claudio Silva
FAtt
25
4
0
06 Jan 2022
Explainable Deep Learning in Healthcare: A Methodological Survey from an Attribution View
Di Jin
Elena Sergeeva
W. Weng
Geeticka Chauhan
Peter Szolovits
OOD
31
55
0
05 Dec 2021
Defense Against Explanation Manipulation
Ruixiang Tang
Ninghao Liu
Fan Yang
Na Zou
Xia Hu
AAML
44
11
0
08 Nov 2021
Coalitional Bayesian Autoencoders -- Towards explainable unsupervised deep learning
Bang Xiang Yong
Alexandra Brintrup
21
6
0
19 Oct 2021
TorchEsegeta: Framework for Interpretability and Explainability of Image-based Deep Learning Models
S. Chatterjee
Arnab Das
Chirag Mandal
Budhaditya Mukhopadhyay
Manish Vipinraj
Aniruddh Shukla
R. Rao
Chompunuch Sarasaen
Oliver Speck
A. Nürnberger
MedIm
37
14
0
16 Oct 2021
Diagnostics-Guided Explanation Generation
Pepa Atanasova
J. Simonsen
Christina Lioma
Isabelle Augenstein
LRM
FAtt
38
6
0
08 Sep 2021
A Survey on Automated Fact-Checking
Zhijiang Guo
M. Schlichtkrull
Andreas Vlachos
27
457
0
26 Aug 2021
Semantic Concentration for Domain Adaptation
Shuang Li
Mixue Xie
Fangrui Lv
Chi Harold Liu
Jian Liang
C. Qin
Wei Li
52
87
0
12 Aug 2021
Quantifying Explainability in NLP and Analyzing Algorithms for Performance-Explainability Tradeoff
Michael J. Naylor
C. French
Samantha R. Terker
Uday Kamath
36
10
0
12 Jul 2021
What will it take to generate fairness-preserving explanations?
Jessica Dai
Sohini Upadhyay
Stephen H. Bach
Himabindu Lakkaraju
FAtt
FaML
13
14
0
24 Jun 2021
On Locality of Local Explanation Models
Sahra Ghalebikesabi
Lucile Ter-Minassian
Karla Diaz-Ordaz
Chris Holmes
FedML
FAtt
26
39
0
24 Jun 2021
Synthetic Benchmarks for Scientific Research in Explainable Machine Learning
Yang Liu
Sujay Khandagale
Colin White
W. Neiswanger
37
65
0
23 Jun 2021
On the Sensitivity and Stability of Model Interpretations in NLP
Fan Yin
Zhouxing Shi
Cho-Jui Hsieh
Kai-Wei Chang
FAtt
16
33
0
18 Apr 2021
Shapley Explanation Networks
Rui Wang
Xiaoqian Wang
David I. Inouye
TDI
FAtt
21
44
0
06 Apr 2021
Evaluating explainable artificial intelligence methods for multi-label deep learning classification tasks in remote sensing
Ioannis Kakogeorgiou
Konstantinos Karantzalos
XAI
23
118
0
03 Apr 2021
Robust Models Are More Interpretable Because Attributions Look Normal
Zifan Wang
Matt Fredrikson
Anupam Datta
OOD
FAtt
35
25
0
20 Mar 2021
EX-RAY: Distinguishing Injected Backdoor from Natural Features in Neural Networks by Examining Differential Feature Symmetry
Yingqi Liu
Guangyu Shen
Guanhong Tao
Zhenting Wang
Shiqing Ma
Xinming Zhang
AAML
30
8
0
16 Mar 2021
Do Input Gradients Highlight Discriminative Features?
Harshay Shah
Prateek Jain
Praneeth Netrapalli
AAML
FAtt
21
57
0
25 Feb 2021
Understanding Failures of Deep Networks via Robust Feature Extraction
Sahil Singla
Besmira Nushi
S. Shah
Ece Kamar
Eric Horvitz
FAtt
28
83
0
03 Dec 2020
What Do You See? Evaluation of Explainable Artificial Intelligence (XAI) Interpretability through Neural Backdoors
Yi-Shan Lin
Wen-Chuan Lee
Z. Berkay Celik
XAI
29
93
0
22 Sep 2020
Captum: A unified and generic model interpretability library for PyTorch
Narine Kokhlikyan
Vivek Miglani
Miguel Martin
Edward Wang
B. Alsallakh
...
Alexander Melnikov
Natalia Kliushkina
Carlos Araya
Siqi Yan
Orion Reblitz-Richardson
FAtt
29
821
0
16 Sep 2020
A simple defense against adversarial attacks on heatmap explanations
Laura Rieger
Lars Kai Hansen
FAtt
AAML
27
37
0
13 Jul 2020
Proper Network Interpretability Helps Adversarial Robustness in Classification
Akhilan Boopathy
Sijia Liu
Gaoyuan Zhang
Cynthia Liu
Pin-Yu Chen
Shiyu Chang
Luca Daniel
AAML
FAtt
21
66
0
26 Jun 2020
Adversarial Infidelity Learning for Model Interpretation
Jian Liang
Bing Bai
Yuren Cao
Kun Bai
Fei-Yue Wang
AAML
46
18
0
09 Jun 2020
Evaluating and Aggregating Feature-based Model Explanations
Umang Bhatt
Adrian Weller
J. M. F. Moura
XAI
33
218
0
01 May 2020
Model Agnostic Multilevel Explanations
K. Ramamurthy
B. Vinzamuri
Yunfeng Zhang
Amit Dhurandhar
21
41
0
12 Mar 2020
Explaining Explanations: Axiomatic Feature Interactions for Deep Networks
Joseph D. Janizek
Pascal Sturmfels
Su-In Lee
FAtt
30
143
0
10 Feb 2020
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
Chih-Kuan Yeh
Been Kim
Sercan Ö. Arik
Chun-Liang Li
Tomas Pfister
Pradeep Ravikumar
FAtt
122
297
0
17 Oct 2019
Evaluating Explanation Without Ground Truth in Interpretable Machine Learning
Fan Yang
Mengnan Du
Xia Hu
XAI
ELM
27
66
0
16 Jul 2019
ML-LOO: Detecting Adversarial Examples with Feature Attribution
Puyudi Yang
Jianbo Chen
Cho-Jui Hsieh
Jane-ling Wang
Michael I. Jordan
AAML
22
101
0
08 Jun 2019
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Previous
1
2