ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.09109
  4. Cited By
DADAM: A Consensus-based Distributed Adaptive Gradient Method for Online
  Optimization

DADAM: A Consensus-based Distributed Adaptive Gradient Method for Online Optimization

25 January 2019
Parvin Nazari
Davoud Ataee Tarzanagh
George Michailidis
    ODL
ArXivPDFHTML

Papers citing "DADAM: A Consensus-based Distributed Adaptive Gradient Method for Online Optimization"

35 / 35 papers shown
Title
Dynamic Regret of Adaptive Gradient Methods for Strongly Convex Problems
Dynamic Regret of Adaptive Gradient Methods for Strongly Convex Problems
Parvin Nazari
E. Khorram
ODL
74
3
0
04 Sep 2022
Adaptive First-and Zeroth-order Methods for Weakly Convex Stochastic
  Optimization Problems
Adaptive First-and Zeroth-order Methods for Weakly Convex Stochastic Optimization Problems
Parvin Nazari
Davoud Ataee Tarzanagh
George Michailidis
ODL
38
13
0
19 May 2020
Dynamic Local Regret for Non-convex Online Forecasting
Dynamic Local Regret for Non-convex Online Forecasting
Sergul Aydore
Tianhao Zhu
Dean Phillips Foster
AI4TS
35
17
0
16 Oct 2019
Central Server Free Federated Learning over Single-sided Trust Social
  Networks
Central Server Free Federated Learning over Single-sided Trust Social Networks
Chaoyang He
Conghui Tan
Hanlin Tang
Shuang Qiu
Ji Liu
FedML
39
75
0
11 Oct 2019
Introduction to Online Convex Optimization
Introduction to Online Convex Optimization
Elad Hazan
OffRL
165
1,928
0
07 Sep 2019
Online Learning over Dynamic Graphs via Distributed Proximal Gradient
  Algorithm
Online Learning over Dynamic Graphs via Distributed Proximal Gradient Algorithm
Rishabh Dixit
Amrit Singh Bedi
K. Rajawat
30
32
0
16 May 2019
On the Convergence of Adam and Beyond
On the Convergence of Adam and Beyond
Sashank J. Reddi
Satyen Kale
Surinder Kumar
90
2,498
0
19 Apr 2019
On the Convergence Proof of AMSGrad and a New Version
On the Convergence Proof of AMSGrad and a New Version
Phuong T. Tran
L. T. Phong
ODL
58
87
0
07 Apr 2019
Online Learning with Continuous Variations: Dynamic Regret and
  Reductions
Online Learning with Continuous Variations: Dynamic Regret and Reductions
Ching-An Cheng
Jonathan Lee
Ken Goldberg
Byron Boots
53
16
0
19 Feb 2019
Decentralized Online Learning: Take Benefits from Others' Data without
  Sharing Your Own to Track Global Trend
Decentralized Online Learning: Take Benefits from Others' Data without Sharing Your Own to Track Global Trend
Wendi Wu
Zongren Li
Yawei Zhao
Chenkai Yu
P. Zhao
Ji Liu
FedML
51
16
0
29 Jan 2019
On the Convergence of Adaptive Gradient Methods for Nonconvex
  Optimization
On the Convergence of Adaptive Gradient Methods for Nonconvex Optimization
Dongruo Zhou
Yiqi Tang
Yuan Cao
Ziyan Yang
Quanquan Gu
52
151
0
16 Aug 2018
On the Convergence of A Class of Adam-Type Algorithms for Non-Convex
  Optimization
On the Convergence of A Class of Adam-Type Algorithms for Non-Convex Optimization
Xiangyi Chen
Sijia Liu
Ruoyu Sun
Mingyi Hong
53
323
0
08 Aug 2018
Convergence guarantees for RMSProp and ADAM in non-convex optimization
  and an empirical comparison to Nesterov acceleration
Convergence guarantees for RMSProp and ADAM in non-convex optimization and an empirical comparison to Nesterov acceleration
Soham De
Anirbit Mukherjee
Enayat Ullah
49
101
0
18 Jul 2018
AdaGrad stepsizes: Sharp convergence over nonconvex landscapes
AdaGrad stepsizes: Sharp convergence over nonconvex landscapes
Rachel A. Ward
Xiaoxia Wu
Léon Bottou
ODL
59
364
0
05 Jun 2018
D$^2$: Decentralized Training over Decentralized Data
D2^22: Decentralized Training over Decentralized Data
Hanlin Tang
Xiangru Lian
Ming Yan
Ce Zhang
Ji Liu
31
350
0
19 Mar 2018
Zeroth Order Nonconvex Multi-Agent Optimization over Networks
Zeroth Order Nonconvex Multi-Agent Optimization over Networks
Davood Hajinezhad
Mingyi Hong
Alfredo García
51
80
0
27 Oct 2017
Decentralized Online Learning with Kernels
Decentralized Online Learning with Kernels
Alec Koppel
Santiago Paternain
C. Richard
Alejandro Ribeiro
56
51
0
11 Oct 2017
Network Topology and Communication-Computation Tradeoffs in
  Decentralized Optimization
Network Topology and Communication-Computation Tradeoffs in Decentralized Optimization
A. Nedić
Alexander Olshevsky
Michael G. Rabbat
58
509
0
26 Sep 2017
Efficient Regret Minimization in Non-Convex Games
Efficient Regret Minimization in Non-Convex Games
Elad Hazan
Karan Singh
Cyril Zhang
91
96
0
31 Jul 2017
Collaborative Deep Learning in Fixed Topology Networks
Collaborative Deep Learning in Fixed Topology Networks
Zhanhong Jiang
Aditya Balu
Chinmay Hegde
Soumik Sarkar
FedML
54
180
0
23 Jun 2017
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case
  Study for Decentralized Parallel Stochastic Gradient Descent
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent
Xiangru Lian
Ce Zhang
Huan Zhang
Cho-Jui Hsieh
Wei Zhang
Ji Liu
50
1,227
0
25 May 2017
The Marginal Value of Adaptive Gradient Methods in Machine Learning
The Marginal Value of Adaptive Gradient Methods in Machine Learning
Ashia Wilson
Rebecca Roelofs
Mitchell Stern
Nathan Srebro
Benjamin Recht
ODL
58
1,029
0
23 May 2017
An Online Optimization Approach for Multi-Agent Tracking of Dynamic
  Parameters in the Presence of Adversarial Noise
An Online Optimization Approach for Multi-Agent Tracking of Dynamic Parameters in the Presence of Adversarial Noise
Shahin Shahrampour
Ali Jadbabaie
53
24
0
21 Feb 2017
Communication-Efficient Algorithms for Decentralized and Stochastic
  Optimization
Communication-Efficient Algorithms for Decentralized and Stochastic Optimization
Guanghui Lan
Soomin Lee
Yi Zhou
71
218
0
14 Jan 2017
Distributed Online Optimization in Dynamic Environments Using Mirror
  Descent
Distributed Online Optimization in Dynamic Environments Using Mirror Descent
Shahin Shahrampour
Ali Jadbabaie
219
280
0
09 Sep 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
764
36,781
0
25 Aug 2016
On Nonconvex Decentralized Gradient Descent
On Nonconvex Decentralized Gradient Descent
Jinshan Zeng
W. Yin
71
191
0
20 Aug 2016
Improved Dynamic Regret for Non-degenerate Functions
Improved Dynamic Regret for Non-degenerate Functions
Lijun Zhang
Tianbao Yang
Jinfeng Yi
Jing Rong
Zhi Zhou
226
127
0
13 Aug 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
392
17,453
0
17 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,814
0
10 Dec 2015
Online Distributed Optimization on Dynamic Networks
Online Distributed Optimization on Dynamic Networks
Saghar Hosseini
Airlie Chapman
M. Mesbahi
69
145
0
22 Dec 2014
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.7K
150,006
0
22 Dec 2014
Non-stationary Stochastic Optimization
Non-stationary Stochastic Optimization
Omar Besbes
Y. Gur
A. Zeevi
171
433
0
20 Jul 2013
ADADELTA: An Adaptive Learning Rate Method
ADADELTA: An Adaptive Learning Rate Method
Matthew D. Zeiler
ODL
143
6,626
0
22 Dec 2012
Adaptive Bound Optimization for Online Convex Optimization
Adaptive Bound Optimization for Online Convex Optimization
H. B. McMahan
Matthew J. Streeter
ODL
96
387
0
26 Feb 2010
1