Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.08576
Cited By
Learning Interpretable Models with Causal Guarantees
24 January 2019
Carolyn Kim
Osbert Bastani
FaML
OOD
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Interpretable Models with Causal Guarantees"
11 / 11 papers shown
Title
Explainable AI for Bioinformatics: Methods, Tools, and Applications
Md. Rezaul Karim
Tanhim Islam
Oya Beyan
Christoph Lange
Michael Cochez
Dietrich-Rebholz Schuhmann
Stefan Decker
29
68
0
25 Dec 2022
Navigating causal deep learning
Jeroen Berrevoets
Krzysztof Kacprzyk
Zhaozhi Qian
M. Schaar
CML
41
2
0
01 Dec 2022
Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability
Jonathan Crabbé
Alicia Curth
Ioana Bica
M. Schaar
CML
22
16
0
16 Jun 2022
Unsupervised Causal Binary Concepts Discovery with VAE for Black-box Model Explanation
Thien Q. Tran
Kazuto Fukuchi
Youhei Akimoto
Jun Sakuma
CML
40
10
0
09 Sep 2021
Information-theoretic Evolution of Model Agnostic Global Explanations
Sukriti Verma
Nikaash Puri
Piyush B. Gupta
Balaji Krishnamurthy
FAtt
29
0
0
14 May 2021
Robust and Stable Black Box Explanations
Himabindu Lakkaraju
Nino Arsov
Osbert Bastani
AAML
FAtt
24
84
0
12 Nov 2020
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
30
73
0
24 Jun 2020
Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation
Raha Moraffah
Mansooreh Karami
Ruocheng Guo
A. Raglin
Huan Liu
CML
ELM
XAI
27
213
0
09 Mar 2020
Evaluating Explanation Without Ground Truth in Interpretable Machine Learning
Fan Yang
Mengnan Du
Xia Hu
XAI
ELM
27
66
0
16 Jul 2019
Learning Certifiably Optimal Rule Lists for Categorical Data
E. Angelino
Nicholas Larus-Stone
Daniel Alabi
Margo Seltzer
Cynthia Rudin
60
195
0
06 Apr 2017
Learning Representations for Counterfactual Inference
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
232
719
0
12 May 2016
1