Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.08558
Cited By
Quantifying Interpretability and Trust in Machine Learning Systems
20 January 2019
Philipp Schmidt
F. Biessmann
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Quantifying Interpretability and Trust in Machine Learning Systems"
16 / 16 papers shown
Title
Less is More: The Influence of Pruning on the Explainability of CNNs
David Weber
F. Merkle
Pascal Schöttle
Stephan Schlögl
Martin Nocker
FAtt
173
1
0
17 Feb 2023
The Promise and Peril of Human Evaluation for Model Interpretability
Bernease Herman
69
144
0
20 Nov 2017
The Doctor Just Won't Accept That!
Zachary Chase Lipton
FaML
63
101
0
20 Nov 2017
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
254
4,281
0
22 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,090
0
22 May 2017
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
219
2,910
0
14 Mar 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
410
3,820
0
28 Feb 2017
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
183
3,708
0
10 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
17,071
0
16 Feb 2016
Explaining NonLinear Classification Decisions with Deep Taylor Decomposition
G. Montavon
Sebastian Lapuschkin
Alexander Binder
Wojciech Samek
Klaus-Robert Muller
FAtt
68
739
0
08 Dec 2015
Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model
Benjamin Letham
Cynthia Rudin
Tyler H. McCormick
D. Madigan
FAtt
72
743
0
05 Nov 2015
Evaluating the visualization of what a Deep Neural Network has learned
Wojciech Samek
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
XAI
139
1,200
0
21 Sep 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
282
19,129
0
20 Dec 2014
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
314
7,321
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
603
15,907
0
12 Nov 2013
The Feature Importance Ranking Measure
A. Zien
Nicole Krämer
Soeren Sonnenburg
Gunnar Rätsch
FAtt
102
147
0
23 Jun 2009
1