ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.08511
  4. Cited By
A Unified Analysis of Extra-gradient and Optimistic Gradient Methods for
  Saddle Point Problems: Proximal Point Approach

A Unified Analysis of Extra-gradient and Optimistic Gradient Methods for Saddle Point Problems: Proximal Point Approach

24 January 2019
Aryan Mokhtari
Asuman Ozdaglar
S. Pattathil
ArXivPDFHTML

Papers citing "A Unified Analysis of Extra-gradient and Optimistic Gradient Methods for Saddle Point Problems: Proximal Point Approach"

47 / 47 papers shown
Title
On Corruption-Robustness in Performative Reinforcement Learning
On Corruption-Robustness in Performative Reinforcement Learning
Vasilis Pollatos
Debmalya Mandal
Goran Radanović
32
1
0
08 May 2025
Negative Stepsizes Make Gradient-Descent-Ascent Converge
Negative Stepsizes Make Gradient-Descent-Ascent Converge
Henry Shugart
Jason M. Altschuler
25
0
0
02 May 2025
Learning Variational Inequalities from Data: Fast Generalization Rates under Strong Monotonicity
Learning Variational Inequalities from Data: Fast Generalization Rates under Strong Monotonicity
Eric Zhao
Tatjana Chavdarova
Michael I. Jordan
47
0
0
20 Feb 2025
Randomized Block-Coordinate Optimistic Gradient Algorithms for Root-Finding Problems
Randomized Block-Coordinate Optimistic Gradient Algorithms for Root-Finding Problems
Quoc Tran-Dinh
Yang Luo
91
6
0
28 Jan 2025
Two-Timescale Gradient Descent Ascent Algorithms for Nonconvex Minimax Optimization
Two-Timescale Gradient Descent Ascent Algorithms for Nonconvex Minimax Optimization
Tianyi Lin
Chi Jin
Michael I. Jordan
52
6
0
28 Jan 2025
Contractivity and linear convergence in bilinear saddle-point problems: An operator-theoretic approach
Contractivity and linear convergence in bilinear saddle-point problems: An operator-theoretic approach
Colin Dirren
Mattia Bianchi
Panagiotis D. Grontas
John Lygeros
Florian Dorfler
36
0
0
18 Oct 2024
Second-Order Min-Max Optimization with Lazy Hessians
Second-Order Min-Max Optimization with Lazy Hessians
Lesi Chen
Chengchang Liu
Jingzhao Zhang
46
1
0
12 Oct 2024
Automatic debiasing of neural networks via moment-constrained learning
Automatic debiasing of neural networks via moment-constrained learning
Christian L. Hines
Oliver J. Hines
CML
OOD
33
0
0
29 Sep 2024
Electroencephalogram Emotion Recognition via AUC Maximization
Electroencephalogram Emotion Recognition via AUC Maximization
Minheng Xiao
Shi Bo
46
2
0
16 Aug 2024
Primal Methods for Variational Inequality Problems with Functional Constraints
Primal Methods for Variational Inequality Problems with Functional Constraints
Liang Zhang
Niao He
Michael Muehlebach
39
2
0
19 Mar 2024
Multi-agent Reinforcement Learning: A Comprehensive Survey
Multi-agent Reinforcement Learning: A Comprehensive Survey
Dom Huh
Prasant Mohapatra
AI4CE
33
8
0
15 Dec 2023
Optimal Guarantees for Algorithmic Reproducibility and Gradient
  Complexity in Convex Optimization
Optimal Guarantees for Algorithmic Reproducibility and Gradient Complexity in Convex Optimization
Liang Zhang
Junchi Yang
Amin Karbasi
Niao He
28
2
0
26 Oct 2023
Communication-Efficient Gradient Descent-Accent Methods for Distributed
  Variational Inequalities: Unified Analysis and Local Updates
Communication-Efficient Gradient Descent-Accent Methods for Distributed Variational Inequalities: Unified Analysis and Local Updates
Siqi Zhang
S. Choudhury
Sebastian U. Stich
Nicolas Loizou
FedML
19
3
0
08 Jun 2023
Online Optimization for Randomized Network Resource Allocation with
  Long-Term Constraints
Online Optimization for Randomized Network Resource Allocation with Long-Term Constraints
Ahmed Sid-Ali
Ioannis Lambadaris
Yiqiang Q. Zhao
G. Shaikhet
Shima Kheradmand
15
1
0
24 May 2023
Sublinear Convergence Rates of Extragradient-Type Methods: A Survey on
  Classical and Recent Developments
Sublinear Convergence Rates of Extragradient-Type Methods: A Survey on Classical and Recent Developments
Quoc Tran-Dinh
35
7
0
30 Mar 2023
PRECISION: Decentralized Constrained Min-Max Learning with Low
  Communication and Sample Complexities
PRECISION: Decentralized Constrained Min-Max Learning with Low Communication and Sample Complexities
Zhuqing Liu
Xin Zhang
Songtao Lu
Jia-Wei Liu
32
7
0
05 Mar 2023
Single-Call Stochastic Extragradient Methods for Structured Non-monotone
  Variational Inequalities: Improved Analysis under Weaker Conditions
Single-Call Stochastic Extragradient Methods for Structured Non-monotone Variational Inequalities: Improved Analysis under Weaker Conditions
S. Choudhury
Eduard A. Gorbunov
Nicolas Loizou
25
13
0
27 Feb 2023
Blessings and Curses of Covariate Shifts: Adversarial Learning Dynamics,
  Directional Convergence, and Equilibria
Blessings and Curses of Covariate Shifts: Adversarial Learning Dynamics, Directional Convergence, and Equilibria
Tengyuan Liang
20
1
0
05 Dec 2022
Finding mixed-strategy equilibria of continuous-action games without
  gradients using randomized policy networks
Finding mixed-strategy equilibria of continuous-action games without gradients using randomized policy networks
Carlos Martin
T. Sandholm
26
11
0
29 Nov 2022
Zeroth-Order Alternating Gradient Descent Ascent Algorithms for a Class
  of Nonconvex-Nonconcave Minimax Problems
Zeroth-Order Alternating Gradient Descent Ascent Algorithms for a Class of Nonconvex-Nonconcave Minimax Problems
Zi Xu
Ziqi Wang
Junlin Wang
Y. Dai
18
11
0
24 Nov 2022
Asynchronous Gradient Play in Zero-Sum Multi-agent Games
Asynchronous Gradient Play in Zero-Sum Multi-agent Games
Ruicheng Ao
Shicong Cen
Yuejie Chi
45
5
0
16 Nov 2022
Explicit Second-Order Min-Max Optimization Methods with Optimal
  Convergence Guarantee
Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee
Tianyi Lin
P. Mertikopoulos
Michael I. Jordan
26
11
0
23 Oct 2022
Proximal Learning With Opponent-Learning Awareness
Proximal Learning With Opponent-Learning Awareness
S. Zhao
Chris Xiaoxuan Lu
Roger C. Grosse
Jakob N. Foerster
29
21
0
18 Oct 2022
Accelerated Single-Call Methods for Constrained Min-Max Optimization
Accelerated Single-Call Methods for Constrained Min-Max Optimization
Yang Cai
Weiqiang Zheng
19
30
0
06 Oct 2022
Smooth Monotone Stochastic Variational Inequalities and Saddle Point
  Problems: A Survey
Smooth Monotone Stochastic Variational Inequalities and Saddle Point Problems: A Survey
Aleksandr Beznosikov
Boris Polyak
Eduard A. Gorbunov
D. Kovalev
Alexander Gasnikov
39
31
0
29 Aug 2022
Last-Iterate Convergence with Full and Noisy Feedback in Two-Player
  Zero-Sum Games
Last-Iterate Convergence with Full and Noisy Feedback in Two-Player Zero-Sum Games
Kenshi Abe
Kaito Ariu
Mitsuki Sakamoto
Kenta Toyoshima
Atsushi Iwasaki
28
11
0
21 Aug 2022
Alternating Mirror Descent for Constrained Min-Max Games
Alternating Mirror Descent for Constrained Min-Max Games
Andre Wibisono
Molei Tao
Georgios Piliouras
24
14
0
08 Jun 2022
FedNest: Federated Bilevel, Minimax, and Compositional Optimization
FedNest: Federated Bilevel, Minimax, and Compositional Optimization
Davoud Ataee Tarzanagh
Mingchen Li
Christos Thrampoulidis
Samet Oymak
FedML
40
73
0
04 May 2022
Riemannian Hamiltonian methods for min-max optimization on manifolds
Riemannian Hamiltonian methods for min-max optimization on manifolds
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Pawan Kumar
Junbin Gao
30
17
0
25 Apr 2022
Decentralized Stochastic Variance Reduced Extragradient Method
Decentralized Stochastic Variance Reduced Extragradient Method
Luo Luo
Haishan Ye
21
7
0
01 Feb 2022
Training Generative Adversarial Networks with Adaptive Composite
  Gradient
Training Generative Adversarial Networks with Adaptive Composite Gradient
Huiqing Qi
Fang Li
Shengli Tan
Xiangyun Zhang
GAN
21
3
0
10 Nov 2021
Minimax Optimization: The Case of Convex-Submodular
Minimax Optimization: The Case of Convex-Submodular
Arman Adibi
Aryan Mokhtari
Hamed Hassani
13
7
0
01 Nov 2021
Extragradient Method: $O(1/K)$ Last-Iterate Convergence for Monotone
  Variational Inequalities and Connections With Cocoercivity
Extragradient Method: O(1/K)O(1/K)O(1/K) Last-Iterate Convergence for Monotone Variational Inequalities and Connections With Cocoercivity
Eduard A. Gorbunov
Nicolas Loizou
Gauthier Gidel
23
64
0
08 Oct 2021
Tighter Analysis of Alternating Stochastic Gradient Method for
  Stochastic Nested Problems
Tighter Analysis of Alternating Stochastic Gradient Method for Stochastic Nested Problems
Tianyi Chen
Yuejiao Sun
W. Yin
24
33
0
25 Jun 2021
A Decentralized Adaptive Momentum Method for Solving a Class of Min-Max
  Optimization Problems
A Decentralized Adaptive Momentum Method for Solving a Class of Min-Max Optimization Problems
Babak Barazandeh
Tianjian Huang
George Michailidis
24
12
0
10 Jun 2021
Last-iterate Convergence of Decentralized Optimistic Gradient
  Descent/Ascent in Infinite-horizon Competitive Markov Games
Last-iterate Convergence of Decentralized Optimistic Gradient Descent/Ascent in Infinite-horizon Competitive Markov Games
Chen-Yu Wei
Chung-Wei Lee
Mengxiao Zhang
Haipeng Luo
25
82
0
08 Feb 2021
A Single-Loop Smoothed Gradient Descent-Ascent Algorithm for Nonconvex-Concave Min-Max Problems
A Single-Loop Smoothed Gradient Descent-Ascent Algorithm for Nonconvex-Concave Min-Max Problems
Jiawei Zhang
Peijun Xiao
Ruoyu Sun
Zhi-Quan Luo
33
97
0
29 Oct 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
33
50
0
08 Jul 2020
A Convergent and Dimension-Independent Min-Max Optimization Algorithm
A Convergent and Dimension-Independent Min-Max Optimization Algorithm
Vijay Keswani
Oren Mangoubi
Sushant Sachdeva
Nisheeth K. Vishnoi
15
1
0
22 Jun 2020
Linear Last-iterate Convergence in Constrained Saddle-point Optimization
Linear Last-iterate Convergence in Constrained Saddle-point Optimization
Chen-Yu Wei
Chung-Wei Lee
Mengxiao Zhang
Haipeng Luo
19
11
0
16 Jun 2020
The limits of min-max optimization algorithms: convergence to spurious
  non-critical sets
The limits of min-max optimization algorithms: convergence to spurious non-critical sets
Ya-Ping Hsieh
P. Mertikopoulos
V. Cevher
27
81
0
16 Jun 2020
GANs May Have No Nash Equilibria
GANs May Have No Nash Equilibria
Farzan Farnia
Asuman Ozdaglar
GAN
28
43
0
21 Feb 2020
Accelerating Smooth Games by Manipulating Spectral Shapes
Accelerating Smooth Games by Manipulating Spectral Shapes
Waïss Azizian
Damien Scieur
Ioannis Mitliagkas
Simon Lacoste-Julien
Gauthier Gidel
33
48
0
02 Jan 2020
A Decentralized Proximal Point-type Method for Saddle Point Problems
A Decentralized Proximal Point-type Method for Saddle Point Problems
Weijie Liu
Aryan Mokhtari
Asuman Ozdaglar
S. Pattathil
Zebang Shen
Nenggan Zheng
61
30
0
31 Oct 2019
Efficient Algorithms for Smooth Minimax Optimization
Efficient Algorithms for Smooth Minimax Optimization
K. K. Thekumparampil
Prateek Jain
Praneeth Netrapalli
Sewoong Oh
22
190
0
02 Jul 2019
ODE Analysis of Stochastic Gradient Methods with Optimism and Anchoring
  for Minimax Problems
ODE Analysis of Stochastic Gradient Methods with Optimism and Anchoring for Minimax Problems
Ernest K. Ryu
Kun Yuan
W. Yin
20
36
0
26 May 2019
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave
  Saddle Point Problems without Strong Convexity
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave Saddle Point Problems without Strong Convexity
S. Du
Wei Hu
58
120
0
05 Feb 2018
1