Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.08511
Cited By
A Unified Analysis of Extra-gradient and Optimistic Gradient Methods for Saddle Point Problems: Proximal Point Approach
24 January 2019
Aryan Mokhtari
Asuman Ozdaglar
S. Pattathil
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Unified Analysis of Extra-gradient and Optimistic Gradient Methods for Saddle Point Problems: Proximal Point Approach"
47 / 47 papers shown
Title
On Corruption-Robustness in Performative Reinforcement Learning
Vasilis Pollatos
Debmalya Mandal
Goran Radanović
32
1
0
08 May 2025
Negative Stepsizes Make Gradient-Descent-Ascent Converge
Henry Shugart
Jason M. Altschuler
25
0
0
02 May 2025
Learning Variational Inequalities from Data: Fast Generalization Rates under Strong Monotonicity
Eric Zhao
Tatjana Chavdarova
Michael I. Jordan
47
0
0
20 Feb 2025
Randomized Block-Coordinate Optimistic Gradient Algorithms for Root-Finding Problems
Quoc Tran-Dinh
Yang Luo
91
6
0
28 Jan 2025
Two-Timescale Gradient Descent Ascent Algorithms for Nonconvex Minimax Optimization
Tianyi Lin
Chi Jin
Michael I. Jordan
52
6
0
28 Jan 2025
Contractivity and linear convergence in bilinear saddle-point problems: An operator-theoretic approach
Colin Dirren
Mattia Bianchi
Panagiotis D. Grontas
John Lygeros
Florian Dorfler
36
0
0
18 Oct 2024
Second-Order Min-Max Optimization with Lazy Hessians
Lesi Chen
Chengchang Liu
Jingzhao Zhang
46
1
0
12 Oct 2024
Automatic debiasing of neural networks via moment-constrained learning
Christian L. Hines
Oliver J. Hines
CML
OOD
33
0
0
29 Sep 2024
Electroencephalogram Emotion Recognition via AUC Maximization
Minheng Xiao
Shi Bo
46
2
0
16 Aug 2024
Primal Methods for Variational Inequality Problems with Functional Constraints
Liang Zhang
Niao He
Michael Muehlebach
39
2
0
19 Mar 2024
Multi-agent Reinforcement Learning: A Comprehensive Survey
Dom Huh
Prasant Mohapatra
AI4CE
33
8
0
15 Dec 2023
Optimal Guarantees for Algorithmic Reproducibility and Gradient Complexity in Convex Optimization
Liang Zhang
Junchi Yang
Amin Karbasi
Niao He
28
2
0
26 Oct 2023
Communication-Efficient Gradient Descent-Accent Methods for Distributed Variational Inequalities: Unified Analysis and Local Updates
Siqi Zhang
S. Choudhury
Sebastian U. Stich
Nicolas Loizou
FedML
19
3
0
08 Jun 2023
Online Optimization for Randomized Network Resource Allocation with Long-Term Constraints
Ahmed Sid-Ali
Ioannis Lambadaris
Yiqiang Q. Zhao
G. Shaikhet
Shima Kheradmand
15
1
0
24 May 2023
Sublinear Convergence Rates of Extragradient-Type Methods: A Survey on Classical and Recent Developments
Quoc Tran-Dinh
35
7
0
30 Mar 2023
PRECISION: Decentralized Constrained Min-Max Learning with Low Communication and Sample Complexities
Zhuqing Liu
Xin Zhang
Songtao Lu
Jia-Wei Liu
32
7
0
05 Mar 2023
Single-Call Stochastic Extragradient Methods for Structured Non-monotone Variational Inequalities: Improved Analysis under Weaker Conditions
S. Choudhury
Eduard A. Gorbunov
Nicolas Loizou
25
13
0
27 Feb 2023
Blessings and Curses of Covariate Shifts: Adversarial Learning Dynamics, Directional Convergence, and Equilibria
Tengyuan Liang
20
1
0
05 Dec 2022
Finding mixed-strategy equilibria of continuous-action games without gradients using randomized policy networks
Carlos Martin
T. Sandholm
26
11
0
29 Nov 2022
Zeroth-Order Alternating Gradient Descent Ascent Algorithms for a Class of Nonconvex-Nonconcave Minimax Problems
Zi Xu
Ziqi Wang
Junlin Wang
Y. Dai
18
11
0
24 Nov 2022
Asynchronous Gradient Play in Zero-Sum Multi-agent Games
Ruicheng Ao
Shicong Cen
Yuejie Chi
45
5
0
16 Nov 2022
Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee
Tianyi Lin
P. Mertikopoulos
Michael I. Jordan
26
11
0
23 Oct 2022
Proximal Learning With Opponent-Learning Awareness
S. Zhao
Chris Xiaoxuan Lu
Roger C. Grosse
Jakob N. Foerster
29
21
0
18 Oct 2022
Accelerated Single-Call Methods for Constrained Min-Max Optimization
Yang Cai
Weiqiang Zheng
19
30
0
06 Oct 2022
Smooth Monotone Stochastic Variational Inequalities and Saddle Point Problems: A Survey
Aleksandr Beznosikov
Boris Polyak
Eduard A. Gorbunov
D. Kovalev
Alexander Gasnikov
39
31
0
29 Aug 2022
Last-Iterate Convergence with Full and Noisy Feedback in Two-Player Zero-Sum Games
Kenshi Abe
Kaito Ariu
Mitsuki Sakamoto
Kenta Toyoshima
Atsushi Iwasaki
28
11
0
21 Aug 2022
Alternating Mirror Descent for Constrained Min-Max Games
Andre Wibisono
Molei Tao
Georgios Piliouras
24
14
0
08 Jun 2022
FedNest: Federated Bilevel, Minimax, and Compositional Optimization
Davoud Ataee Tarzanagh
Mingchen Li
Christos Thrampoulidis
Samet Oymak
FedML
40
73
0
04 May 2022
Riemannian Hamiltonian methods for min-max optimization on manifolds
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Pawan Kumar
Junbin Gao
30
17
0
25 Apr 2022
Decentralized Stochastic Variance Reduced Extragradient Method
Luo Luo
Haishan Ye
21
7
0
01 Feb 2022
Training Generative Adversarial Networks with Adaptive Composite Gradient
Huiqing Qi
Fang Li
Shengli Tan
Xiangyun Zhang
GAN
21
3
0
10 Nov 2021
Minimax Optimization: The Case of Convex-Submodular
Arman Adibi
Aryan Mokhtari
Hamed Hassani
13
7
0
01 Nov 2021
Extragradient Method:
O
(
1
/
K
)
O(1/K)
O
(
1/
K
)
Last-Iterate Convergence for Monotone Variational Inequalities and Connections With Cocoercivity
Eduard A. Gorbunov
Nicolas Loizou
Gauthier Gidel
23
64
0
08 Oct 2021
Tighter Analysis of Alternating Stochastic Gradient Method for Stochastic Nested Problems
Tianyi Chen
Yuejiao Sun
W. Yin
24
33
0
25 Jun 2021
A Decentralized Adaptive Momentum Method for Solving a Class of Min-Max Optimization Problems
Babak Barazandeh
Tianjian Huang
George Michailidis
24
12
0
10 Jun 2021
Last-iterate Convergence of Decentralized Optimistic Gradient Descent/Ascent in Infinite-horizon Competitive Markov Games
Chen-Yu Wei
Chung-Wei Lee
Mengxiao Zhang
Haipeng Luo
25
82
0
08 Feb 2021
A Single-Loop Smoothed Gradient Descent-Ascent Algorithm for Nonconvex-Concave Min-Max Problems
Jiawei Zhang
Peijun Xiao
Ruoyu Sun
Zhi-Quan Luo
33
97
0
29 Oct 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
33
50
0
08 Jul 2020
A Convergent and Dimension-Independent Min-Max Optimization Algorithm
Vijay Keswani
Oren Mangoubi
Sushant Sachdeva
Nisheeth K. Vishnoi
15
1
0
22 Jun 2020
Linear Last-iterate Convergence in Constrained Saddle-point Optimization
Chen-Yu Wei
Chung-Wei Lee
Mengxiao Zhang
Haipeng Luo
19
11
0
16 Jun 2020
The limits of min-max optimization algorithms: convergence to spurious non-critical sets
Ya-Ping Hsieh
P. Mertikopoulos
V. Cevher
27
81
0
16 Jun 2020
GANs May Have No Nash Equilibria
Farzan Farnia
Asuman Ozdaglar
GAN
28
43
0
21 Feb 2020
Accelerating Smooth Games by Manipulating Spectral Shapes
Waïss Azizian
Damien Scieur
Ioannis Mitliagkas
Simon Lacoste-Julien
Gauthier Gidel
33
48
0
02 Jan 2020
A Decentralized Proximal Point-type Method for Saddle Point Problems
Weijie Liu
Aryan Mokhtari
Asuman Ozdaglar
S. Pattathil
Zebang Shen
Nenggan Zheng
61
30
0
31 Oct 2019
Efficient Algorithms for Smooth Minimax Optimization
K. K. Thekumparampil
Prateek Jain
Praneeth Netrapalli
Sewoong Oh
22
190
0
02 Jul 2019
ODE Analysis of Stochastic Gradient Methods with Optimism and Anchoring for Minimax Problems
Ernest K. Ryu
Kun Yuan
W. Yin
20
36
0
26 May 2019
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave Saddle Point Problems without Strong Convexity
S. Du
Wei Hu
58
120
0
05 Feb 2018
1