Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.08278
Cited By
v1
v2 (latest)
Heavy-Tailed Universality Predicts Trends in Test Accuracies for Very Large Pre-Trained Deep Neural Networks
24 January 2019
Charles H. Martin
Michael W. Mahoney
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Heavy-Tailed Universality Predicts Trends in Test Accuracies for Very Large Pre-Trained Deep Neural Networks"
20 / 20 papers shown
Title
Leveraging Gradients for Unsupervised Accuracy Estimation under Distribution Shift
Renchunzi Xie
Ambroise Odonnat
Vasilii Feofanov
I. Redko
Jianfeng Zhang
Bo An
UQCV
136
1
0
17 Jan 2024
Traditional and Heavy-Tailed Self Regularization in Neural Network Models
Charles H. Martin
Michael W. Mahoney
87
126
0
24 Jan 2019
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning
Charles H. Martin
Michael W. Mahoney
AI4CE
123
201
0
02 Oct 2018
The jamming transition as a paradigm to understand the loss landscape of deep neural networks
Mario Geiger
S. Spigler
Stéphane dÁscoli
Levent Sagun
Marco Baity-Jesi
Giulio Biroli
Matthieu Wyart
82
143
0
25 Sep 2018
A Surprising Linear Relationship Predicts Test Performance in Deep Networks
Q. Liao
Brando Miranda
Andrzej Banburski
Jack Hidary
T. Poggio
61
32
0
25 Jul 2018
Theory IIIb: Generalization in Deep Networks
T. Poggio
Q. Liao
Brando Miranda
Andrzej Banburski
Xavier Boix
Jack Hidary
ODL
AI4CE
92
26
0
29 Jun 2018
Understanding Generalization and Optimization Performance of Deep CNNs
Pan Zhou
Jiashi Feng
MLT
114
50
0
28 May 2018
On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization
Sanjeev Arora
Nadav Cohen
Elad Hazan
118
487
0
19 Feb 2018
Stronger generalization bounds for deep nets via a compression approach
Sanjeev Arora
Rong Ge
Behnam Neyshabur
Yi Zhang
MLT
AI4CE
93
643
0
14 Feb 2018
The Implicit Bias of Gradient Descent on Separable Data
Daniel Soudry
Elad Hoffer
Mor Shpigel Nacson
Suriya Gunasekar
Nathan Srebro
170
924
0
27 Oct 2017
Rethinking generalization requires revisiting old ideas: statistical mechanics approaches and complex learning behavior
Charles H. Martin
Michael W. Mahoney
AI4CE
69
64
0
26 Oct 2017
Generalization in Deep Learning
Kenji Kawaguchi
L. Kaelbling
Yoshua Bengio
ODL
133
460
0
16 Oct 2017
A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks
Behnam Neyshabur
Srinadh Bhojanapalli
Nathan Srebro
90
610
0
29 Jul 2017
Exploring Generalization in Deep Learning
Behnam Neyshabur
Srinadh Bhojanapalli
David A. McAllester
Nathan Srebro
FAtt
162
1,259
0
27 Jun 2017
Spectrally-normalized margin bounds for neural networks
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
214
1,225
0
26 Jun 2017
Spectral Norm Regularization for Improving the Generalizability of Deep Learning
Yuichi Yoshida
Takeru Miyato
83
335
0
31 May 2017
Norm-Based Capacity Control in Neural Networks
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
292
591
0
27 Feb 2015
In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
AI4CE
101
663
0
20 Dec 2014
Limit Theory for the largest eigenvalues of sample covariance matrices with heavy-tails
Richard A. Davis
Oliver Pfaffel
R. Stelzer
111
37
0
27 Aug 2011
Learning with Spectral Kernels and Heavy-Tailed Data
Michael W. Mahoney
Hariharan Narayanan
97
3
0
24 Jun 2009
1