ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.08106
  4. Cited By
Open-ended Learning in Symmetric Zero-sum Games
v1v2 (latest)

Open-ended Learning in Symmetric Zero-sum Games

23 January 2019
David Balduzzi
M. Garnelo
Yoram Bachrach
Wojciech M. Czarnecki
Julien Perolat
Max Jaderberg
T. Graepel
ArXiv (abs)PDFHTML

Papers citing "Open-ended Learning in Symmetric Zero-sum Games"

11 / 11 papers shown
Title
A Survey on Self-play Methods in Reinforcement Learning
A Survey on Self-play Methods in Reinforcement Learning
Chao Yu
Zelai Xu
Chengdong Ma
Chao Yu
Weijuan Tu
...
Deheng Ye
Wenbo Ding
Yaodong Yang
Yu Wang
Yu Wang
SyDaSSLOnRL
105
9
0
02 Aug 2024
Fusion-PSRO: Nash Policy Fusion for Policy Space Response Oracles
Fusion-PSRO: Nash Policy Fusion for Policy Space Response Oracles
Jiesong Lian
Yucong Huang
Chengdong Ma
Mingzhi Wang
Ying Wen
Long Hu
Yixue Hao
108
1
0
31 May 2024
Paired Open-Ended Trailblazer (POET): Endlessly Generating Increasingly
  Complex and Diverse Learning Environments and Their Solutions
Paired Open-Ended Trailblazer (POET): Endlessly Generating Increasingly Complex and Diverse Learning Environments and Their Solutions
Rui Wang
Joel Lehman
Jeff Clune
Kenneth O. Stanley
92
250
0
07 Jan 2019
Maximum a Posteriori Policy Optimisation
Maximum a Posteriori Policy Optimisation
A. Abdolmaleki
Jost Tobias Springenberg
Yuval Tassa
Rémi Munos
N. Heess
Martin Riedmiller
73
478
0
14 Jun 2018
Re-evaluating Evaluation
Re-evaluating Evaluation
David Balduzzi
K. Tuyls
Julien Perolat
T. Graepel
MoMe
60
101
0
07 Jun 2018
The Mechanics of n-Player Differentiable Games
The Mechanics of n-Player Differentiable Games
David Balduzzi
S. Racanière
James Martens
Jakob N. Foerster
K. Tuyls
T. Graepel
MLT
84
275
0
15 Feb 2018
A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning
A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning
Marc Lanctot
V. Zambaldi
A. Gruslys
Angeliki Lazaridou
K. Tuyls
Julien Perolat
David Silver
T. Graepel
116
638
0
02 Nov 2017
Emergent Complexity via Multi-Agent Competition
Emergent Complexity via Multi-Agent Competition
Trapit Bansal
J. Pachocki
Szymon Sidor
Ilya Sutskever
Igor Mordatch
70
390
0
10 Oct 2017
Continuous Adaptation via Meta-Learning in Nonstationary and Competitive
  Environments
Continuous Adaptation via Meta-Learning in Nonstationary and Competitive Environments
Maruan Al-Shedivat
Trapit Bansal
Yuri Burda
Ilya Sutskever
Igor Mordatch
Pieter Abbeel
CLL
69
354
0
10 Oct 2017
Curiosity-driven Exploration by Self-supervised Prediction
Curiosity-driven Exploration by Self-supervised Prediction
Deepak Pathak
Pulkit Agrawal
Alexei A. Efros
Trevor Darrell
LRMSSL
122
2,451
0
15 May 2017
Statistical ranking and combinatorial Hodge theory
Statistical ranking and combinatorial Hodge theory
Xiaoye Jiang
Lek-Heng Lim
Yuan Yao
Yinyu Ye
115
372
0
07 Nov 2008
1