ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.07929
  4. Cited By
U2-Net: A Bayesian U-Net model with epistemic uncertainty feedback for
  photoreceptor layer segmentation in pathological OCT scans

U2-Net: A Bayesian U-Net model with epistemic uncertainty feedback for photoreceptor layer segmentation in pathological OCT scans

23 January 2019
J. Orlando
Philipp Seeböck
Hrvoje Bogunović
S. Klimscha
C. Grechenig
S. Waldstein
Bianca S. Gerendas
U. Schmidt-Erfurth
    UQCV
ArXivPDFHTML

Papers citing "U2-Net: A Bayesian U-Net model with epistemic uncertainty feedback for photoreceptor layer segmentation in pathological OCT scans"

8 / 8 papers shown
Title
Bayesian Deep Learning Approaches for Uncertainty-Aware Retinal OCT Image Segmentation for Multiple Sclerosis
Bayesian Deep Learning Approaches for Uncertainty-Aware Retinal OCT Image Segmentation for Multiple Sclerosis
Samuel T. M. Ball
UQCV
BDL
34
0
0
17 May 2025
Medical Image Segmentation Review: The success of U-Net
Medical Image Segmentation Review: The success of U-Net
Reza Azad
Ehsan Khodapanah Aghdam
Amelie Rauland
Yiwei Jia
Atlas Haddadi Avval
Afshin Bozorgpour
Sanaz Karimijafarbigloo
Joseph Paul Cohen
Ehsan Adeli
Dorit Merhof
SSeg
28
268
0
27 Nov 2022
Trustworthy clinical AI solutions: a unified review of uncertainty
  quantification in deep learning models for medical image analysis
Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis
Benjamin Lambert
Florence Forbes
A. Tucholka
Senan Doyle
Harmonie Dehaene
M. Dojat
34
81
0
05 Oct 2022
Beyond Voxel Prediction Uncertainty: Identifying brain lesions you can
  trust
Beyond Voxel Prediction Uncertainty: Identifying brain lesions you can trust
Benjamin Lambert
Florence Forbes
Senan Doyle
A. Tucholka
M. Dojat
UQCV
MedIm
24
6
0
22 Sep 2022
Y-Net: A Spatiospectral Dual-Encoder Networkfor Medical Image
  Segmentation
Y-Net: A Spatiospectral Dual-Encoder Networkfor Medical Image Segmentation
Azade Farshad
Yousef Yeganeh
Peter L. Gehlbach
Nassir Navab
34
34
0
15 Apr 2022
A Quantitative Comparison of Epistemic Uncertainty Maps Applied to
  Multi-Class Segmentation
A Quantitative Comparison of Epistemic Uncertainty Maps Applied to Multi-Class Segmentation
Robin Camarasa
D. Bos
J. Hendrikse
P. Nederkoorn
D. Epidemiology
D. Neurology
Department of Computer Science
UQCV
29
12
0
22 Sep 2021
U-Net and its variants for medical image segmentation: theory and
  applications
U-Net and its variants for medical image segmentation: theory and applications
N. Siddique
Sidike Paheding
Colin P. Elkin
Vijay Devabhaktuni
SSeg
33
1,046
0
02 Nov 2020
Exploiting Epistemic Uncertainty of Anatomy Segmentation for Anomaly
  Detection in Retinal OCT
Exploiting Epistemic Uncertainty of Anatomy Segmentation for Anomaly Detection in Retinal OCT
Philipp Seeböck
J. Orlando
T. Schlegl
S. Waldstein
Hrvoje Bogunović
S. Klimscha
Georg Langs
U. Schmidt-Erfurth
UQCV
19
134
0
29 May 2019
1