ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.07487
  4. Cited By
Non-Asymptotic Analysis of Fractional Langevin Monte Carlo for
  Non-Convex Optimization

Non-Asymptotic Analysis of Fractional Langevin Monte Carlo for Non-Convex Optimization

22 January 2019
T. H. Nguyen
Umut Simsekli
G. Richard
ArXivPDFHTML

Papers citing "Non-Asymptotic Analysis of Fractional Langevin Monte Carlo for Non-Convex Optimization"

21 / 21 papers shown
Title
Convergence, Sticking and Escape: Stochastic Dynamics Near Critical Points in SGD
Convergence, Sticking and Escape: Stochastic Dynamics Near Critical Points in SGD
Dmitry Dudukalov
Artem Logachov
Vladimir Lotov
Timofei Prasolov
Evgeny Prokopenko
Anton Tarasenko
39
0
0
24 May 2025
Probabilistic Permutation Synchronization using the Riemannian Structure
  of the Birkhoff Polytope
Probabilistic Permutation Synchronization using the Riemannian Structure of the Birkhoff Polytope
Tolga Birdal
Umut Simsekli
65
38
0
11 Apr 2019
Breaking Reversibility Accelerates Langevin Dynamics for Global
  Non-Convex Optimization
Breaking Reversibility Accelerates Langevin Dynamics for Global Non-Convex Optimization
Xuefeng Gao
Mert Gurbuzbalaban
Lingjiong Zhu
54
31
0
19 Dec 2018
Global Non-convex Optimization with Discretized Diffusions
Global Non-convex Optimization with Discretized Diffusions
Murat A. Erdogdu
Lester W. Mackey
Ohad Shamir
66
105
0
29 Oct 2018
Asynchronous Stochastic Quasi-Newton MCMC for Non-Convex Optimization
Asynchronous Stochastic Quasi-Newton MCMC for Non-Convex Optimization
Umut Simsekli
Çağatay Yıldız
T. H. Nguyen
G. Richard
A. Cemgil
41
22
0
07 Jun 2018
Bayesian Pose Graph Optimization via Bingham Distributions and Tempered
  Geodesic MCMC
Bayesian Pose Graph Optimization via Bingham Distributions and Tempered Geodesic MCMC
Tolga Birdal
Umut Simsekli
M. Eken
Slobodan Ilic
59
38
0
31 May 2018
Local Optimality and Generalization Guarantees for the Langevin
  Algorithm via Empirical Metastability
Local Optimality and Generalization Guarantees for the Langevin Algorithm via Empirical Metastability
Belinda Tzen
Tengyuan Liang
Maxim Raginsky
45
32
0
18 Feb 2018
Three Factors Influencing Minima in SGD
Three Factors Influencing Minima in SGD
Stanislaw Jastrzebski
Zachary Kenton
Devansh Arpit
Nicolas Ballas
Asja Fischer
Yoshua Bengio
Amos Storkey
76
463
0
13 Nov 2017
sgmcmc: An R Package for Stochastic Gradient Markov Chain Monte Carlo
sgmcmc: An R Package for Stochastic Gradient Markov Chain Monte Carlo
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
43
11
0
02 Oct 2017
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex
  Optimization
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization
Pan Xu
Jinghui Chen
Difan Zou
Quanquan Gu
81
205
0
20 Jul 2017
Fractional Langevin Monte Carlo: Exploring Lévy Driven Stochastic
  Differential Equations for Markov Chain Monte Carlo
Fractional Langevin Monte Carlo: Exploring Lévy Driven Stochastic Differential Equations for Markov Chain Monte Carlo
Umut Simsekli
64
45
0
12 Jun 2017
Further and stronger analogy between sampling and optimization: Langevin
  Monte Carlo and gradient descent
Further and stronger analogy between sampling and optimization: Langevin Monte Carlo and gradient descent
A. Dalalyan
BDL
45
174
0
16 Apr 2017
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
Yuchen Zhang
Percy Liang
Moses Charikar
61
236
0
18 Feb 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a
  nonasymptotic analysis
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
73
521
0
13 Feb 2017
On the Convergence of Stochastic Gradient MCMC Algorithms with
  High-Order Integrators
On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators
Changyou Chen
Nan Ding
Lawrence Carin
69
161
0
21 Oct 2016
High-dimensional Bayesian inference via the Unadjusted Langevin
  Algorithm
High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
82
355
0
05 May 2016
Stochastic Quasi-Newton Langevin Monte Carlo
Stochastic Quasi-Newton Langevin Monte Carlo
Umut Simsekli
Roland Badeau
A. Cemgil
G. Richard
BDL
50
62
0
10 Feb 2016
Non-asymptotic convergence analysis for the Unadjusted Langevin
  Algorithm
Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
66
412
0
17 Jul 2015
A Complete Recipe for Stochastic Gradient MCMC
A Complete Recipe for Stochastic Gradient MCMC
Yian Ma
Tianqi Chen
E. Fox
BDL
SyDa
62
486
0
15 Jun 2015
Theoretical guarantees for approximate sampling from smooth and
  log-concave densities
Theoretical guarantees for approximate sampling from smooth and log-concave densities
A. Dalalyan
80
514
0
23 Dec 2014
Fractional absolute moments of heavy tailed distributions
Fractional absolute moments of heavy tailed distributions
Muneya Matsui
Z. Pawlas
54
31
0
21 Jan 2013
1